Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Toxicol ; 6: 1373003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694815

RESUMO

Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.

2.
Vaccines (Basel) ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746559

RESUMO

During the current pandemic, the vast majority of COVID-19 patients experienced mild symptoms, but some had a potentially fatal aberrant hyperinflammatory immune reaction characterized by high levels of IL-6 and other cytokines. Modulation of this immune reaction has proven to be the only method of reducing mortality in severe and critical COVID-19. The anti-inflammatory drug baricitinib (Olumiant) has recently been strongly recommended by the WHO for use in COVID-19 patients because it reduces the risk of progressive disease and death. It is a Janus Kinase (JAK) 1/2 inhibitor approved for rheumatoid arthritis which was suggested in early 2020 as a treatment for COVID-19. In this review the AI-assisted identification of baricitinib, its antiviral and anti-inflammatory properties, and efficacy in clinical trials are discussed and compared with those of other immune modulators including glucocorticoids, IL-6 and IL-1 receptor blockers and other JAK inhibitors. Baricitinib inhibits both virus infection and cytokine signalling and is not only important for COVID-19 management but is "non-immunological", and so should remain effective if new SARS-CoV-2 variants escape immune control. The repurposing of baricitinib is an example of how advanced artificial intelligence (AI) can quickly identify new drug candidates that have clinical benefit in previously unsuspected therapeutic areas.

3.
Front Pharmacol ; 13: 858557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431929

RESUMO

Asbestos-induced preclinical mouse models of mesothelioma produce tumors that are very similar to those that develop in humans and thus represent an ideal platform to study this rare, universally fatal tumor type. Our team and a number of other research groups have established such models as a stepping stone to new treatments, including chemotherapy, immunotherapy and other approaches that have been/are being translated into clinical trials. In some cases this work has led to changes in mesothelioma treatment practice and over the last 30 years these models and studies have led to trials which have improved the response rate in mesothelioma from less than 10% to over 50%. Mouse models have had a vital role in that improvement and will continue to play a key role in the future success of mesothelioma immunotherapy. In this review we focus only on these original inbred mouse models, the large number of preclinical studies conducted using them and their contribution to current and future clinical therapy for mesothelioma.

4.
Oncoimmunology ; 11(1): 2038403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186441

RESUMO

The process of tumorigenesis leaves a series of indelible genetic changes in tumor cells, that when expressed, have the potential to be tumor-specific immune targets. Neoantigen vaccines that capitalize on this potential immunogenicity have shown efficacy in preclinical models and have now entered clinical trials. Here we discuss the status of personalized neoantigen vaccines and the current major challenges to this nascent field. In particular, we focus on the types of antigens that can be targeted by vaccination and on the role that preexisting immunosuppression, and in particular T-cell exhaustion, will play in the development of effective cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias/genética , Vacinas Anticâncer/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Vacinação
7.
Cancer Immunol Immunother ; 70(11): 3249-3258, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835222

RESUMO

Surgical resection of cancer remains the frontline therapy for millions of patients annually, but post-operative recurrence is common, with a relapse rate of around 45% for non-small cell lung cancer. The tumour draining lymph nodes (dLN) are resected at the time of surgery for staging purposes, and this cannot be a null event for patient survival and future response to immune checkpoint blockade treatment. This project investigates cancer surgery, lymphadenectomy, onset of metastatic disease, and response to immunotherapy in a novel model that closely reflects the clinical setting. In a murine metastatic lung cancer model, primary subcutaneous tumours were resected with associated dLNs remaining intact, completely resected or partially resected. Median survival after surgery was significantly shorter with complete dLN resection at the time of surgery (49 days (95%CI)) compared to when lymph nodes remained intact (> 88 days; p < 0.05). Survival was partially restored with incomplete lymph node resection and CD8 T cell dependent. Treatment with aCTLA4 whilst effective against the primary tumour was ineffective for metastatic lung disease. Conversely, aPD-1/aCD40 treatment was effective in both the primary and metastatic disease settings and restored the detrimental effects of complete dLN resection on survival. In this pre-clinical lung metastatic disease model that closely reflects the clinical setting, we observe decreased frequency of survival after complete lymphadenectomy, which was ameliorated with partial lymph node removal or with early administration of aPD-1/aCD40 therapy. These findings have direct relevance to surgical lymph node resection and adjuvant immunotherapy in lung cancer, and perhaps other cancer, patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Excisão de Linfonodo , Metástase Neoplásica/imunologia , Animais , Quimioterapia Adjuvante/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia
8.
Expert Rev Anticancer Ther ; 21(5): 465-474, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33509005

RESUMO

Background: Single-agent cyclophosphamide can deplete regulatory T-cells (Treg). We aimed to determine optimal dosing and scheduling of oral cyclophosphamide, alongside pemetrexed-based chemotherapy, to deplete Treg in mesothelioma or non-small-cell lung cancer patients.Methods: 31 Patients received pemetrexed ± cisplatin or carboplatin on day 1 of a 21-day cycle (maximum 6 cycles). From cycle two, patients received cyclophosphamide, 50 mg/day, with intrapatient escalation to maximum 100/150 mg/day alternately. Immunological changes were examined by flow cytometry. Primary endpoint was Treg proportion of CD4+ T-cells, with doses tailored to target Treg nadir <4%.Results: Reduction in Treg proportion was observed on day 8 of all cycles, and was not augmented by cyclophosphamide. Few patients achieved the <4% Treg target. Treg proliferation reached nadir one week after chemotherapy, and peaked on day 1 of the subsequent cycle. Efficacy parameters were similar to chemotherapy alone. Seventeen percent of patients ceased cyclophosphamide due to toxicity.Conclusions: Specific Treg depletion to the degree seen with single-agent cyclophosphamide was not observed during pemetrexed-based chemotherapy. This study highlights the poor evidence basis for use of cyclophosphamide as an immunotherapeutic in combination with chemotherapy, and the importance of detailed flow cytometry studies.Trial registration: Clinical trial registration: www.anzctr.org.au identifier is ACTRN12609000260224.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino , Ciclofosfamida/administração & dosagem , Ciclofosfamida/toxicidade , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede , Platina/uso terapêutico , Linfócitos T Reguladores
9.
Cancer Epidemiol Biomarkers Prev ; 29(10): 1973-1982, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732250

RESUMO

BACKGROUND: We have verified a mass spectrometry (MS)-based targeted proteomics signature for the detection of malignant pleural mesothelioma (MPM) from the blood. METHODS: A seven-peptide biomarker MPM signature by targeted proteomics in serum was identified in a previous independent study. Here, we have verified the predictive accuracy of a reduced version of that signature, now composed of six-peptide biomarkers. We have applied liquid chromatography-selected reaction monitoring (LC-SRM), also known as multiple-reaction monitoring (MRM), for the investigation of 402 serum samples from 213 patients with MPM and 189 cancer-free asbestos-exposed donors from the United States, Australia, and Europe. RESULTS: Each of the biomarkers composing the signature was independently informative, with no apparent functional or physical relation to each other. The multiplexing possibility offered by MS proteomics allowed their integration into a single signature with a higher discriminating capacity than that of the single biomarkers alone. The strategy allowed in this way to increase their potential utility for clinical decisions. The signature discriminated patients with MPM and asbestos-exposed donors with AUC of 0.738. For early-stage MPM, AUC was 0.765. This signature was also prognostic, and Kaplan-Meier analysis showed a significant difference between high- and low-risk groups with an HR of 1.659 (95% CI, 1.075-2.562; P = 0.021). CONCLUSIONS: Targeted proteomics allowed the development of a multianalyte signature with diagnostic and prognostic potential for MPM from the blood. IMPACT: The proteomic signature represents an additional diagnostic approach for informing clinical decisions for patients at risk for MPM.


Assuntos
Espectrometria de Massas/métodos , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Proteômica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Adv Sci (Weinh) ; 7(9): 1903410, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32382482

RESUMO

The evolutionary dynamics of tumor-associated neoantigens carry information about drug sensitivity and resistance to the immune checkpoint blockade (ICB). However, the spectrum of somatic mutations is highly heterogeneous among patients, making it difficult to track neoantigens by circulating tumor DNA (ctDNA) sequencing using "one size fits all" commercial gene panels. Thus, individually customized panels (ICPs) are needed to track neoantigen evolution comprehensively during ICB treatment. Dominant neoantigens are predicted from whole exome sequencing data for treatment-naïve tumor tissues. Panels targeting predicted neoantigens are used for personalized ctDNA sequencing. Analyzing ten patients with non-small cell lung cancer, ICPs are effective for tracking most predicted dominant neoantigens (80-100%) in serial peripheral blood samples, and to detect substantially more genes (18-30) than the capacity of current commercial gene panels. A more than 50% decrease in ctDNA concentration after eight weeks of ICB administration is associated with favorable progression-free survival. Furthermore, at the individual level, the magnitude of the early ctDNA response is correlated with the subsequent change in tumor burden. The application of ICP-based ctDNA sequencing is expected to improve the understanding of ICB-driven tumor evolution and to provide personalized management strategies that optimize the clinical benefits of immunotherapies.

11.
Oncoimmunology ; 9(1): 1684713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002298

RESUMO

Neoantigens present unique and specific targets for personalized cancer immunotherapy strategies. Given the low mutational burden yet immunotherapy responsiveness of malignant mesothelioma (MM) when compared to other carcinogen-induced malignancies, identifying candidate neoantigens and T cells that recognize them has been a challenge. We used pleural effusions to gain access to MM tumor cells as well as immune cells in order to characterize the tumor-immune interface in MM. We characterized the landscape of potential neoantigens from SNVs identified in 27 MM patients and performed whole transcriptome sequencing of cell populations from 18 patient-matched pleural effusions. IFNγ ELISpot was performed to detect a CD8+ T cell responses to predicted neoantigens in one patient. We detected a median of 68 (range 7-258) predicted neoantigens across the samples. Wild-type non-binding to mutant binding predicted neoantigens increased risk of death in a model adjusting for age, sex, smoking status, histology and treatment (HR: 33.22, CI: 2.55-433.02, p = .007). Gene expression analysis indicated a dynamic immune environment within the pleural effusions. TCR clonotypes increased with predicted neoantigen burden. A strong activated CD8+ T-cell response was identified for a predicted neoantigen produced by a spontaneous mutation in the ROBO3 gene. Despite the challenges associated with the identification of bonafide neoantigens, there is growing evidence that these molecular changes can provide an actionable target for personalized therapeutics in difficult to treat cancers. Our findings support the existence of candidate neoantigens in MM despite the low mutation burden of the tumor, and may present improved treatment opportunities for patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mesotelioma Maligno , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Mesotelioma Maligno/imunologia , Receptores de Superfície Celular
12.
Oncoimmunology ; 9(1): 1684714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002299

RESUMO

Immune checkpoint blockade (ICPB) is a powerfully effective cancer therapy in some patients. Tumor neo-antigens are likely main targets for attack but it is not clear which and how many tumor mutations in individual cancers are actually antigenic, with or without ICPB therapy and their role as neo-antigen vaccines or as predictors of ICPB responses. To examine this, we interrogated the immune response to tumor neo-antigens in a murine model in which the tumor is induced by a natural human carcinogen (i.e. asbestos) and mimics its human counterpart (i.e. mesothelioma). We identified and screened 33 candidate neo-antigens, and found T cell responses against one candidate in tumor-bearing animals, mutant UQCRC2. Interestingly, we found a high degree of inter-animal variation in the magnitude of neo-antigen responses in otherwise identical mice. ICPB therapy with Cytotoxic T-lymphocyte-associated protein (CTLA-4) and α-glucocorticoid-induced TNFR family related gene (GITR) in doses that induced tumor regression, increased the magnitude of responses and unmasked functional T cell responses against another neo-antigen, UNC45a. Importantly, the magnitude of the pre-treatment draining lymph node (dLN) response to UNC45a closely corresponded to ICPB therapy outcomes. Surprisingly however, boosting pre-treatment UNC45a-specific T cell numbers did not improve response rates to ICPB. These observations suggest a novel biomarker approach to the clinical prediction of ICPB response and have important implications for the development of neo-antigen vaccines.


Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias , Animais , Antígenos de Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfonodos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Citotóxicos
13.
J Thorac Oncol ; 13(11): 1655-1667, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266660

RESUMO

On March 28- 29, 2017, the National Cancer Institute (NCI) Thoracic Malignacy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation convened the NCI-International Association for the Study of Lung Cancer- Mesothelioma Applied Research Foundation Mesothelioma Clinical Trials Planning Meeting in Bethesda, Maryland. The goal of the meeting was to bring together lead academicians, clinicians, scientists, and the U.S. Food and Drug Administration to focus on the development of clinical trials for patients in whom malignant pleural mesothelioma has been diagnosed. In light of the discovery of new cancer targets affecting the clinical development of novel agents and immunotherapies in malignant mesothelioma, the objective of this meeting was to assemble a consensus on at least two or three practice-changing multimodality clinical trials to be conducted through NCI's National Clinical Trials Network.


Assuntos
Neoplasias Pulmonares/terapia , Mesotelioma/terapia , Consenso , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , National Cancer Institute (U.S.) , Estados Unidos
14.
J Thorac Oncol ; 13(9): 1269-1283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29966799

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer that arises from the mesothelial surface of the pleural and peritoneal cavities, the pericardium, and rarely, the tunica vaginalis. The incidence of MPM is expected to increase worldwide in the next two decades. However, even with the use of multimodality treatment, MPM remains challenging to treat, with a 5-year survival rate of less than 5%. The International Association for the Study of Lung Cancer has gathered experts in different areas of mesothelioma research and management to summarize the most significant scientific advances and new frontiers related to mesothelioma therapeutics.


Assuntos
Neoplasias Pulmonares , Mesotelioma , Humanos , Mesotelioma Maligno
15.
Lung Cancer ; 119: 64-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656754

RESUMO

OBJECTIVES: Malignant mesothelioma (MM) is an asbestos related tumour affecting cells of serosal cavities. More than 70% of MM patients develop pleural effusions which contain tumour cells, representing a readily accessible source of malignant cells for genetic analysis. Although common somatic mutations and losses have been identified in solid MM tumours, the characterization of tumour cells within pleural effusions could provide novel insights but is little studied. MATERIALS AND METHODS: DNA and RNA were extracted from cells from short term cultures of 27 human MM pleural effusion samples. Whole exome and transcriptome sequencing was performed using the Ion Torrent platform. Somatic mutations were identified using VarScan2 and SomaticSniper. Copy number alterations were identified using ExomeCNV in R. Significant copy number alterations were identified across all samples using GISTIC2.0. The association between tumour intrinsic properties and survival was analyzed using the Cox proportional hazards regression model. RESULTS: We identified BAP1, CDKN2A and NF2 alterations in the cells from MM pleural effusions at a higher frequency than what is typically seen in MM tumours from surgical series. The median mutation rate was 1.09 mutations/Mb. TRAF7 and LATS2 alterations were also identified at a high frequency (66% and 59% respectively). Novel regions of interest were identified, including alterations in FGFR3, and the regions 19p13.3, 8p23.1 and 1p36.32. CONCLUSION: Short term cultures of tumour cells from MM pleural effusions offer an accessible alternative to surgical tumour biopsies in the study of MM genomics and reveal novel mutations of interest. Pleural effusion tumour cells provide an opportunity for the monitoring of tumour dynamics, treatment response and the clonal evolution of MM tumours.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mutação/genética , Neurofibromina 2/genética , Derrame Pleural Maligno/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Idoso , Idoso de 80 Anos ou mais , Amianto/efeitos adversos , Variações do Número de Cópias de DNA , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Derrame Pleural Maligno/patologia , Células Tumorais Cultivadas
16.
BMC Cancer ; 17(1): 417, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619093

RESUMO

BACKGROUND: CD40 signalling can synergise with chemotherapy in preclinical cancer models, and early clinical studies are promising. We set out to define the immunological changes associated with this therapeutic combination to identify biomarkers for a response to the therapy. Here, we present serial immunomonitoring examining dendritic cell and T cell subpopulations over sequential courses of chemoimmunotherapy. METHODS: Fifteen patients with mesothelioma received up to six 21-day cycles of pemetrexed plus cisplatin chemotherapy and anti-CD40 (CP-870,893). Peripheral blood was collected weekly, and analysed by flow cytometry. Longitudinal immunophenotyping data was analysed by linear mixed modelling, allowing for variation between patients. Exploratory analyses testing for any correlation between overall survival and immunophenotyping data were undertaken up to the third cycle of treatment. RESULTS: Large statistically significant cyclical variations in the proportions of BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells were observed, although all subsets returned to baseline levels after each cycle and no significant changes were observed between start and end of treatment. Expression levels of CD40 and HLA-DR on dendritic cells were also cyclically modulated, again without significant change between start and end of treatment. CD8 and CD4 T cell populations, along with regulatory T cells, effector T cells, and markers of proliferation and activation, showed similar patterns of statistically significant cyclical modulation in response to therapy without changes between start and end of treatment. Exploratory analysis of endpoints revealed that patients with a higher than average proportion of BDCA-2+ dendritic cells (p = 0.010) or a higher than average proportion of activated (ICOS+) CD8 T cells (0.022) in pretreatment blood samples had better overall survival. A higher than average proportion of BDCA-3+ dendritic cells was associated with poorer overall survival at both the second (p = 0.008) and third (p = 0.014) dose of anti-CD40. CONCLUSIONS: Substantial cyclical variations in DC and T cell populations during sequential cycles of chemoimmunotherapy highlight the critical importance of timing of immunological biomarker assessments in interpretation of results and the value of linear mixed modelling in interpretation of longitudinal change over a full treatment course. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry number ACTRN12609000294257 (18th May 2009).


Assuntos
Células Dendríticas/imunologia , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Antígenos CD40/antagonistas & inibidores , Cisplatino/administração & dosagem , Ensaios Clínicos Fase I como Assunto , Células Dendríticas/metabolismo , Feminino , Humanos , Imunofenotipagem , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Subpopulações de Linfócitos T/metabolismo
17.
BMC Cancer ; 17(1): 386, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558669

RESUMO

BACKGROUND: Malignant mesothelioma (MM) is a deadly cancer mainly caused by previous exposure to asbestos. With a latency period up to 50 years the incidence of MM is still increasing, even in countries that banned asbestos. Secondary prevention has been established to provide persons at risk regular health examinations. An earlier detection with tumor markers might improve therapeutic options. Previously, we have developed a new blood-based assay for the protein marker calretinin. Aim of this study was the verification of the assay in an independent study population and comparison with the established marker mesothelin. METHODS: For a case-control study in men, a total of 163 cases of pleural MM and 163 controls were available from Australia, another 36 cases and 72 controls were recruited in Germany. All controls had asbestosis and/or plaques. Calretinin and mesothelin were determined by ELISA (enzyme-linked immunosorbent assay) in serum or plasma collected prior to therapy. We estimated the performance of both markers and tested factors potentially influencing marker concentrations like age, sample storage time, and MM subtype. RESULTS: Calretinin was able to detect all major subtypes except for sarcomatoid MM. Calretinin showed a similar performance in Australian and German men. At a pre-defined specificity of 95% the sensitivity of calretinin reached 71% and that of mesothelin 69%, when excluding sarcomatoid MM. At 97% specificity, the combination with calretinin increased the sensitivity of mesothelin from 66% to 75%. Sample storage time did not influence the results. In controls the concentrations of calretinin increased 1.87-fold (95% CI 1.10-3.20) per 10 years of age and slightly more for mesothelin (2.28, 95% CI 1.30-4.00). CONCLUSIONS: Calretinin could be verified as a blood-based marker for MM. The assay is robust and shows a performance that is comparable to that of mesothelin. Retrospective analyses would not be limited by storage time. The high specificity supports a combination of calretinin with other markers. Calretinin is specific for epithelioid and biphasic MM but not the rarer sarcomatoid form. Molecular markers like calretinin and mesothelin are promising tools to improve and supplement the diagnosis of MM and warrant further validation in a prospective study.


Assuntos
Biomarcadores Tumorais/sangue , Calbindina 2/sangue , Neoplasias Pulmonares/sangue , Mesotelioma/sangue , Neoplasias Pleurais/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Amianto/toxicidade , Austrália , Calbindina 2/genética , Alemanha , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Neoplasias Pleurais/patologia
18.
BMC Cancer ; 17(1): 396, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577549

RESUMO

BACKGROUND: Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities. METHODS: We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA. RESULTS: Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways. CONCLUSIONS: These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM represents a genuine homologue of the human disease, something uncommon in cancer, and is thus a valuable tool to provide insight into MM tumour development and to aide the search for novel therapeutic strategies.


Assuntos
Amianto/toxicidade , Sequenciamento do Exoma , Neoplasias Pulmonares/genética , Mesotelioma/genética , Proteínas de Neoplasias/genética , Animais , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Mutação , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
Cancer Genomics Proteomics ; 14(2): 103-117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28387650

RESUMO

Backgound/Aim: Malignant mesothelioma (MM) is an aggressive and fatal pleural cancer. The cell secretome offers information allowing insight into the pathogenesis of MM while offering the possibility to identify potential therapeutic targets and biomarkers. In the present study the secretome protein profile of MM cell lines was compared to normal mesothelial cells. MATERIALS AND METHODS: Six MM cell lines were compared against three primary mesothelial cell culture preparations using iTRAQ® mass spectrometry. RESULTS: MM cell lines more abundantly secreted exosome-associated proteins than mesothelial cells. MM cell secretomes were enriched in proteins that are involved in response to stress, carbon metabolism, biosynthesis of amino acids, antigen processing and presentation and protein processing in the endoplasmic reticulum. CONCLUSION: The MM cell secretome is enriched in proteins that are likely to enhance its growth and response to stress and help it inhibit an adaptive immune response. These are potential targets for therapeutic and biomarker discovery.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Idoso , Linhagem Celular Tumoral , Células Cultivadas , Análise por Conglomerados , Exossomos/genética , Exossomos/metabolismo , Feminino , Ontologia Genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Análise de Componente Principal , Proteoma/classificação , Proteoma/genética
20.
Chest ; 151(4): 891-897, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27769776

RESUMO

Harnessing the immune system to fight cancer is an exciting advancement in lung cancer therapy. Antitumor immunity can be augmented by checkpoint blockade therapy, which removes the inhibition/brakes imposed on the immune system by the tumor. Checkpoint blockade therapy with anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed death ligand 1 (anti-PDL-1) antibodies causes tumor regression in about 25% of patients with lung cancer. In another approach, the immune system is forced or accelerated to attack the tumor through augmentation of the antitumor response against mutations carried by each lung tumor. This latter approach has become feasible since the advent of next-generation sequencing technology, which allows identification of the specific mutations that each individual lung tumor bears. Indeed lung cancers are now known to have high mutation rates, making them logical targets for mutation-directed immune therapies. We review how sequencing of lung cancer mutations leads to better understanding of how the immune system recognizes tumors, providing improved opportunities to track antitumor immunity and ultimately leading to the development of personalized vaccine strategies aimed at unleashing the host immune system to attack mutations in the tumor.


Assuntos
Imunoterapia , Neoplasias Pulmonares/terapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Mutação/imunologia , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA