Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 882: 163569, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080315

RESUMO

Artificial high flows attempt to simulate natural flood pulses in flow-regulated rivers with the intent to improve their ecological integrity. The long-term use of such high flow events have shown beneficial ecological effects on various rivers globally. However, such responses are often non-linear and characterized by underlying feedback mechanisms among ecosystem components. The question arises as to what happens when such high flow releases are disrupted or even discontinued. Here, we used the long-term (22 years) monitoring dataset from the river Spöl to examine whether discontinuation (2016-2021) of the flood program (annual artificial high flows from 2000 to 2016) resulted in the ecological degradation of the river. We used monitoring data of physico-chemistry, periphyton, benthic organic matter, macroinvertebrates and fish (brown trout, Salmo trutta fario L.) in the analysis. The flood program had no long-term effect on water physico-chemistry with most parameters showing typical variations associated with season and inter-annual weather patterns. The floods were effective at mobilizing bed sediments that reduced periphyton biomass and benthic organic matter following each flood. Increases in periphyton biomass and benthic organic matter occurred between floods, but both parameters showed no significant increase with discontinuation of the flood program. Floods reduced macroinvertebrate densities, but with density increases occurring between floods. The pulsed disturbances, and the progressive change in the habitat template, resulted in shifts in community assembly by reducing densities of Gammarus fossarum, a dominant crustacean, which allowed other taxa to colonize the system. Macroinvertebrate densities remained low after discontinuation of the floods, although G. fossarum densities have increased substantially while other taxa, especially some stoneflies, remained low in abundance. Notably, community assembly returned to a pre-flood composition with discontinuation of the floods. The abundance of brown trout increased substantially during the flood program but returned to low pre-flood numbers with discontinuation of the floods. We conclude that the flood program was beneficial to the ecology of the river Spöl and discontinuation of the floods resulted in degradation of the system after a relatively short lag period. However, the system showed high resilience to an earlier perturbation, a sediment spill in 2013, suggesting a rapid positive response by biota with resumption of the flood program.


Assuntos
Ecossistema , Rios , Animais , Insetos , Inundações , Tempo (Meteorologia)
3.
Sci Total Environ ; 855: 158658, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113799

RESUMO

Freshwater systems have undergone drastic alterations during the last century, potentially affecting cross-boundary resource transfers between aquatic and terrestrial ecosystems. One important connection is the export of biomass by emergent aquatic insects containing omega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), that is scarce in terrestrial systems. Because of taxon-specific differences in PUFA content and functional traits, the contribution of different insect groups should be considered, in addition to total biomass export. In this context, one important trait is the emergence mode. Stoneflies, in contrast to other aquatic insects, crawl to land to emerge instead of flying directly from the water surface, making them accessible to ground-dwelling predators. Because stoneflies are especially susceptible to environmental change, stream degradation might cause a mismatch of available and required nutrients, particularly for ground-dwelling predators. In this study, we estimated emergent biomass and EPA export along two streams with different levels of habitat degradation. The EPA content in aquatic insects did not differ with different degrees of habitat degradation and total biomass export in spring was with 7.9 ± 9.6 mg m-2 day-1 in the degraded and 7.3 ± 8.5 mg m-2 day-1 in the natural system, also unaffected. However, habitat degradation substantially altered the contribution of crawling emergence to the total export in spring, with no biomass export by stoneflies at the most degraded sites. The EPA content in ground-dwelling spiders was correlated with emergent stonefly biomass, making up only 16.0 ± 6.2 % of total fatty acids at sites with no stonefly emergence, but 27.3 ± 3.0 % at sites with highest stonefly emergence. Because immune function in ground-dwelling spiders has been connected to EPA levels, reduced crawling emergence might impact spider fitness. Functional traits, like emergence mode as well as nutritional quality, should be considered when assessing the effects of stream degradation on adjacent terrestrial ecosystems.


Assuntos
Aranhas , Animais , Ecossistema , Insetos , Biomassa , Estações do Ano , Cadeia Alimentar
4.
Ecotoxicology ; 31(2): 312-323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988727

RESUMO

Gold mining is currently one of the main anthropogenic sources of mercury in the environment. In this study, the total mercury content was measured in bottom sediments, benthic macroinvertebrates (mayfly larvae), and fish (Siberian dace) along the Boroo River in northern Mongolia. There was a gold recovery plant in the middle reaches of the river until the mid-twentieth century; an accident there in the 1950s caused a mercury spill. We found an increased content of mercury in measured ecosystem components near the plant compared to the upper reaches of the river. The mercury content in sediments varied from trace amounts in the upper Boroo to 2200 ng/g dry weight (dw) in the vicinity of the plant ruins. The mercury content in mayfly larvae ranged from 50 to 2940 ng/g dw and had a spatial pattern as sediments, with the highest concentrations near the plant. The mercury content in sediments was lower at the mouth of the Boroo River than near the plant, reflecting the lower boundary of the mercury spill. Maximum values of mercury content in fish muscle were found at the river's mouth and were several times higher than in other rivers of northern Mongolia. Median mercury content in muscles of dace from the lower Boroo in 2016 has doubled since studies in 2010-2012, which may be the result of current mercury releases from gold mining.


Assuntos
Ephemeroptera , Mercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mercúrio/análise , Mineração , Mongólia , Rios , Poluentes Químicos da Água/análise
5.
J Environ Manage ; 303: 114122, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838387

RESUMO

Rivers regulated by dams display several ecosystem alterations due to modified flow and sediment regimes. Downstream from a dam, ecosystem degradation occurs because of reduced disturbance, mostly derived from limitations on flow variability and sediment supply. In the last decade, most flow restoration/dam impact mitigation was oriented towards the development of environmental flows. Flow variability (and consequent disturbance) can be reintroduced by releasing artificial high flows (experimental floods). Flow-sediment interactions during experimental floods represent strong ecosystem drivers, influencing nutrient dynamics, and metabolic and functional properties. In river networks, sediment and water inputs from tributaries generate points of discontinuity that can drive major changes in environmental conditions, affecting habitat structure and determining functional differences between upstream and downstream. However, despite the relevance for management, flow/sediment relations during environmental flows - and more importantly during experimental floods - remain poorly understood, mostly due to the lack of empirical evidence. In this study, we examined how a major tributary (source of water and sediments) modified the physical habitat template of a regulated river, thereby influencing ecological and geomorphological responses to experimental floods. Methods combined high-resolution drone mapping techniques with a wide range of biological samples collected in field surveys before, during, and after experimental floods in an alpine river. Data were used to quantify changes in relevant functional and structural ecosystem properties, relating ecological responses to geomorphological dynamics. Results highlight the importance of tributaries in restoring ecosystem properties lost after damming, enhancing the resilience of the system. In addition, we observed that disturbance legacy played a fundamental role in determining ecological conditions of a river prior to experimental floods, thus confirming that considering flow variability and sediment availability is crucial in adaptive dam management and environmental flows design.


Assuntos
Ecossistema , Inundações , Rios , Dispositivos Aéreos não Tripulados , Água
6.
Sci Total Environ ; 788: 147497, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134395

RESUMO

River floodplains are spatially diverse ecosystems that respond quickly to flow variations and disturbance. However, it remains unclear how flow alteration and hydrological disturbance impacts the structure and biodiversity of complex microbial communities in these ecosystems. Here, we examined the spatial and seasonal dynamics of microbial communities in aquatic (benthic) and terrestrial habitats of three hydrologically contrasting (natural flow, residual flow, hydropeaking flow) floodplain systems. Microbial communities (alpha and beta diversity) differed more among floodplain habitats than between riverine floodplains. Microbial communities in all systems displayed congruent seasonal effects. In the residual and hydropeaking systems, an experimental flood was released from a reservoir to mimic a natural high flow event causing hydromorphological disturbance. The experimental flood caused a temporary shift in microbial communities by releasing microbes from the reservoir as well as redistributing communities among floodplain habitats. The flood-mediated shift in community structures had only a transient impact as pelagic bacteria did not persist within floodplain habitats over time after the flood. More frequent pulse disturbances might lead to an alternate structure of bacterial communities in floodplains over time.


Assuntos
Ecossistema , Microbiota , Conservação dos Recursos Naturais , Inundações , Hidrologia , Rios
7.
J Environ Manage ; 295: 113066, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34146777

RESUMO

Sediment transport in mountain streams can be a major hazard to downstream infrastructure. Consequently, sediment traps are a common feature in many high gradient streams to retain large volumes of sediment and protect settlements from major sediment transport events. Despite the wide application of these instream structures, there is little knowledge regarding the environmental and ecological effects on streams. Here, we investigated the hydromorphological effects of sediment traps on instream habitats and associated macroinvertebrate communities in four impacted and three non-impacted streams in Switzerland. Sediment traps significantly disrupted the sediment regime homogenising grain size percentiles compared to the natural stepwise downstream fining in control streams. This disruption in the sediment regime resulted in finer grain size distributions upstream of the sediment trap, and reduced substrate diversity in the sediment retention basin and just downstream of the trap. The reductions in substrate diversity resulted in an altered macroinvertebrate community composition. Further, the disconnection in sediment transport led to a lack of longitudinal correlation in macroinvertebrate communities. Refugia provision downstream of the sediment trap, and resource availability within the retention basin, were diminished, potentially reducing resilience of macroinvertebrate assemblages to instream disturbances. The effects of sediment traps were most likely localised in three of the four streams with substrate diversity recovering to comparable control values within 8 wetted widths (ca. 50 m) downstream of the trap associated with natural longitudinal fining. In contrast, ecological and environmental effects propagated downstream in one impacted stream with no recovery being evident. Sediment retention basins in the impacted streams provided a local artificially unique habitat of dynamic-braided channels. Our results indicate that sediment traps can significantly disrupt the sediment regime with important consequences for instream ecology and environmental conditions, although these effects can be system specific. Further work is needed to fully understand the effects of sediment traps in mountain streams to assist resource managers in the mitigation and future construction of these structures.


Assuntos
Ecossistema , Invertebrados , Animais , Monitoramento Ambiental , Suíça
8.
Sci Total Environ ; 724: 138194, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251887

RESUMO

Drawing insights from multiple disciplines is essential for finding integrative solutions that are required to tackle complex environmental problems. Human activities are causing unprecedented influence on global ecosystems, culminating in the loss of species and fundamental changes in the selective environments of organisms across the tree of life. Our collective understanding about biological evolution can help identify and mitigate many of the environmental problems in the Anthropocene. To this end, we propose a stronger integration of environmental sciences with evolutionary biology.


Assuntos
Evolução Biológica , Ecossistema , Humanos
9.
Sci Rep ; 9(1): 5176, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914717

RESUMO

River reaches downstream dams where a constant residual flow discharge is imposed, often lack sediment supply and periodic inundation due to the absence of natural flood events. In this study, a two-year return flood was released from an upstream reservoir and combined with sediment replenishment to enhance instream habitat conditions downstream of Rossens hydropower dam on the Sarine River in western Switzerland. Sediment replenishment consisted of four sediment deposits distributed as alternate bars along the river banks, a solution which was previously tested in laboratory. The morphological evolution of the replenishment and of the downstream riverbed were surveyed including pre- and post-flood topography. A hydro-morphological index to evaluate the quality of riverine habitats, based on the variability of flow depth and flow velocity in the analyzed reach, was investigated. The combination of the artificial flood with sediment replenishment proved to be a robust measure to supply a river with sediment and to enhance hydraulic habitat suitability.

10.
Sci Total Environ ; 650(Pt 2): 2164-2180, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30290357

RESUMO

In Alpine streams, humans have strongly modified the interactions between hydraulic processes, geomorphology and aquatic life through dams, flow abstraction at water intakes and river channel engineering. To mitigate these impacts, research has addressed both minimum flows and flow variability to sustain aquatic ecosystems. Whilst such environmental flows might work downstream of dams, this may not be the case for water intakes. Intakes, generally much smaller than dams, are designed to abstract water and to leave sediment behind. Sediment accumulation then results in the need to flush intakes periodically, often more frequently than daily in some highly glaciated basins. Sediment delivery downstream is then maintained through short duration floods with very high sediment loads. Here we tested the hypothesis that sediment flushing, and the associated high frequency of bed disturbance, controls in-stream habitat and macroinvertebrate assemblages. We collected macroinvertebrates over a 17-month period from an Alpine stream as well as a set of lateral unperturbed tributaries that served as controls. In contrast to established conceptual models, our results showed that the stream is largely void of life during summer, but that populations recover rapidly as the frequency of intake flushing falls in early autumn, producing richer and larger populations in winter and early spring. The recovery in autumn may be due to the recruitment of individuals from tributaries. We conclude that intake flushing in summer inverts expected summer-winter macroinvertebrate abundances, and questions the extent to which environmental flows in intake-impacted Alpine streams will lead to improvements in instream macrofauna unless sediment also is managed.


Assuntos
Biodiversidade , Ecossistema , Sedimentos Geológicos/análise , Invertebrados/fisiologia , Centrais Elétricas , Rios , Animais , Estações do Ano , Suíça
11.
Sci Rep ; 8(1): 10185, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29977048

RESUMO

Sediment bypass tunnels (SBTs) are guiding structures used to reduce sediment accumulation in reservoirs during high flows by transporting sediments to downstream reaches during operation. Previous studies monitoring the ecological effects of SBT operations on downstream reaches suggest a positive influence of SBTs on riverbed sediment conditions and macroinvertebrate communities based on traditional morphology-based surveys. Morphology-based macroinvertebrate assessments are costly and time-consuming, and the large number of morphologically cryptic, small-sized and undescribed species usually results in coarse taxonomic identification. Here, we used DNA metabarcoding analysis to assess the influence of SBT operations on macroinvertebrates downstream of SBT outlets by estimating species diversity and pairwise community dissimilarity between upstream and downstream locations in dam-fragmented rivers with operational SBTs in comparison to dam-fragmented (i.e., no SBTs) and free-flowing rivers (i.e., no dam). We found that macroinvertebrate community dissimilarity decreases with increasing operation time and frequency of SBTs. These factors of SBT operation influence changes in riverbed features, e.g. sediment relations, that subsequently effect the recovery of downstream macroinvertebrate communities to their respective upstream communities. Macroinvertebrate abundance using morphologically-identified specimens was positively correlated to read abundance using metabarcoding. This supports and reinforces the use of quantitative estimates for diversity analysis with metabarcoding data.


Assuntos
Biodiversidade , Monitorização de Parâmetros Ecológicos/métodos , Invertebrados/genética , Animais , Código de Barras de DNA Taxonômico , Invertebrados/classificação , Rios , Recursos Hídricos
12.
Mol Ecol ; 27(3): 613-635, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334414

RESUMO

The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty.


Assuntos
Especiação Genética , Anfípodes/fisiologia , Animais , Biodiversidade , Bases de Dados como Assunto , Filogenia , Especificidade da Espécie
13.
Nat Ecol Evol ; 2(2): 325-333, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255301

RESUMO

Global change threatens invertebrate biodiversity and its central role in numerous ecosystem functions and services. Functional trait analyses have been advocated to uncover global mechanisms behind biodiversity responses to environmental change, but the application of this approach for invertebrates is underdeveloped relative to other organism groups. From an evaluation of 363 records comprising >1.23 million invertebrates collected from rivers across nine biogeographic regions on three continents, consistent responses of community trait composition and diversity to replicated gradients of reduced glacier cover are demonstrated. After accounting for a systematic regional effect of latitude, the processes shaping river invertebrate functional diversity are globally consistent. Analyses nested within individual regions identified an increase in functional diversity as glacier cover decreases. Community assembly models demonstrated that dispersal limitation was the dominant process underlying these patterns, although environmental filtering was also evident in highly glacierized basins. These findings indicate that predictable mechanisms govern river invertebrate community responses to decreasing glacier cover globally.


Assuntos
Biodiversidade , Aquecimento Global , Camada de Gelo , Invertebrados/fisiologia , Rios , Animais , Ecossistema , Europa (Continente) , Nova Zelândia , América do Norte
14.
Proc Natl Acad Sci U S A ; 114(37): 9770-9778, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28874558

RESUMO

Glaciers cover ∼10% of the Earth's land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage.


Assuntos
Agricultura/métodos , Ecossistema , Aquecimento Global , Camada de Gelo , Biodiversidade , Clima , Cadeia Alimentar , Humanos , Hidrologia , Rios
15.
Mol Ecol ; 26(6): 1670-1686, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28099770

RESUMO

Understanding ecological divergence of morphologically similar but genetically distinct species - previously considered as a single morphospecies - is of key importance in evolutionary ecology and conservation biology. Despite their morphological similarity, cryptic species may have evolved distinct adaptations. If such ecological divergence is unaccounted for, any predictions about their responses to environmental change and biodiversity loss may be biased. We used spatio-temporally replicated field surveys of larval cohort structure and population genetic analyses (using nuclear microsatellite markers) to test for life-history divergence between two cryptic lineages of the alpine mayfly Baetis alpinus in the Swiss Alps. We found that the more widespread and abundant cryptic lineage represents a 'generalist' with at least two cohorts per year, whereas the less abundant lineage is restricted to higher elevations and represents a 'specialist' with a single cohort per year. Importantly, our results indicate partial temporal segregation in reproductive periods between these lineages, potentially facilitating local coexistence and reproductive isolation. Taken together, our findings emphasize the need for a taxonomic revision: widespread and apparently generalist morphospecies can hide cryptic lineages with much narrower ecological niches and distribution ranges.


Assuntos
Evolução Biológica , Ephemeroptera/classificação , Genética Populacional , Filogenia , Animais , Variação Genética , Repetições de Microssatélites , Análise Espaço-Temporal
16.
BMC Evol Biol ; 16: 77, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068234

RESUMO

BACKGROUND: Many species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation. RESULTS: We tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages. CONCLUSIONS: Taken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.


Assuntos
Ephemeroptera/classificação , Ephemeroptera/genética , Variação Genética , Distribuição Animal , Animais , Teorema de Bayes , Biodiversidade , Evolução Biológica , DNA Mitocondrial/genética , Ecossistema , Ephemeroptera/anatomia & histologia , Genética Populacional , Repetições de Microssatélites , Filogenia , Suíça , Simpatria
17.
Front Microbiol ; 6: 1221, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579113

RESUMO

Microbial community assembly and microbial functions are affected by a number of different but coupled drivers such as local habitat characteristics, dispersal rates, and species interactions. In groundwater systems, hydrological flow can introduce spatial structure and directional dependencies among these drivers. We examined the importance of hydrology in structuring bacterial communities and their function within two alpine floodplains during different hydrological states. Piezometers were installed in stream sediments and surrounding riparian zones to assess hydrological flows and also were used as incubation chambers to examine bacterial community structures and enzymatic functions along hydrological flow paths. Spatial eigenvector models in conjunction with models based on physico-chemical groundwater characteristics were used to evaluate the importance of hydrologically-driven processes influencing bacterial assemblages and their enzymatic activities. Our results suggest a strong influence (up to 40% explained variation) of hydrological connectivity on enzymatic activities. The effect of hydrology on bacterial community structure was considerably less strong, suggesting that assemblages demonstrate large functional plasticity/redundancy. Effect size varied between hydrological periods but flow-related mechanisms always had the most power in explaining both bacterial structure and functioning. Changes in hydrology should be considered in models predicting ecosystem functioning and integrated into ecosystem management strategies for floodplains.

18.
PLoS One ; 9(11): e113524, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409508

RESUMO

Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.


Assuntos
Bactérias/crescimento & desenvolvimento , Água Subterrânea/microbiologia , Bactérias/isolamento & purificação , Cytophaga/crescimento & desenvolvimento , Cytophaga/isolamento & purificação , Ecossistema , Concentração de Íons de Hidrogênio , Camada de Gelo , Compostos Orgânicos/química , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Estações do Ano , Temperatura
19.
ISME J ; 7(12): 2361-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23842653

RESUMO

Glaciated alpine floodplains are responding quickly to climate change through shrinking ice masses. Given the expected future changes in their physicochemical environment, we anticipated variable shifts in structure and ecosystem functioning of hyporheic microbial communities in proglacial alpine streams, depending on present community characteristics and landscape structures. We examined microbial structure and functioning during different hydrologic periods in glacial (kryal) streams and, as contrasting systems, groundwater-fed (krenal) streams. Three catchments were chosen to cover an array of landscape features, including interconnected lakes, differences in local geology and degree of deglaciation. Community structure was assessed by automated ribosomal intergenic spacer analysis and microbial function by potential enzyme activities. We found each catchment to contain a distinct bacterial community structure and different degrees of separation in structure and functioning that were linked to the physicochemical properties of the waters within each catchment. Bacterial communities showed high functional plasticity, although achieved by different strategies in each system. Typical kryal communities showed a strong linkage of structure and function that indicated a major prevalence of specialists, whereas krenal sediments were dominated by generalists. With the rapid retreat of glaciers and therefore altered ecohydrological characteristics, lotic microbial structure and functioning are likely to change substantially in proglacial floodplains in the future. The trajectory of these changes will vary depending on contemporary bacterial community characteristics and landscape structures that ultimately determine the sustainability of ecosystem functioning.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Rios/microbiologia , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Carga Bacteriana , Biodiversidade , Sedimentos Geológicos/química , Aquecimento Global , Modelos Lineares , Rios/química
20.
Ecol Appl ; 22(7): 1949-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23210311

RESUMO

This study examined the long-term changes in community assembly, resistance, and resilience of macroinvertebrates following 10 years of experimental floods in a flow regulated river. Physico-chemistry, macroinvertebrates, and periphyton biomass were monitored before and sequentially after each of 22 floods, and drift/seston was collected during six separate floods over the study period. The floods reduced the density and taxon richness of macroinvertebrates, and a nonmetric dimensional scaling (NMDS) analysis distinguished temporal shifts in community assembly. Resistance (measured as the relative lack of loss in density) tofloods varied among taxa, and the abundance of resistant taxa was related to the temporal changes in community assembly. Community resistance was inversely related to flood magnitude with all larger floods (> 25 m3/s, > 16-fold over baseflow) reducing densities by > 75% regardless of flood year, whereas smaller floods (< 20 m3/s) reduced taxon richness approximately twofold less than larger floods. No relationship was found between flood magnitude and the relative loss in periphyton biomass. Resilience was defined as the recovery slope (positive slope of a parameter with time following each flood) and was unrelated to shifts in community assembly or resistance. Macroinvertebrate drift and seston demonstrated hysteresis (i.e., a temporal response in parameter quantity with change in discharge) during each flood, although larger floods typically had two peaks in both parameters. The first peak was a response to the initial increases in flow, whereas the second peak was associated with streambed disturbance (substrate mobility) and side-slope failure causing increased scour. Drift density was 3-9 times greater and that of seston 3-30 times greater during larger floods than smaller floods. These results demonstrate temporal shifts in macroinvertebrate community assembly toward a pre-dam assemblage following sequential floods in this flow regulated river, thus confirming the ecological role of habitat filtering in organism distribution and abundance. Community resistance and resilience were unrelated to shifts in community assembly, suggesting that they are mostly evolutionary properties of ecosystems as populations adapt to changing environmental (disturbance regimes) and biotic (novel colonists) conditions. As these systems show behaviors similar to dispersal-limited ecosystems, a long-term perspective is required for management actions targeted toward regulated and fragmented rivers.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Inundações , Invertebrados/classificação , Invertebrados/fisiologia , Animais , Rios , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...