Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36772927

RESUMO

G protein-coupled receptor (GPCR) activation initiates signalling via a complex network of intracellular effectors that combine to produce diverse cellular and tissue responses. Although we have an advanced understanding of the proximal events following receptor stimulation, the molecular detail of GPCR signalling further downstream often remains obscure. Unravelling these GPCR-mediated signalling networks has important implications for receptor biology and drug discovery. In this context, phosphoproteomics has emerged as a powerful approach for investigating global GPCR signal transduction. Here, we provide a brief overview of the phosphoproteomic workflow and discuss current limitations and future directions for this technology. By highlighting some of the novel insights into GPCR signalling networks gained using phosphoproteomics, we demonstrate the utility of global phosphoproteomics to dissect GPCR signalling networks and to accelerate discovery of new targets for therapeutic development.

2.
Semin Cancer Biol ; 89: 18-29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681206

RESUMO

Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Masculino , Humanos , Medicina de Precisão , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Proteínas
3.
Biomolecules ; 12(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139104

RESUMO

Despite the increasing popularity of liquid chromatography−mass spectrometry (LC-MS)-based lipidomics, there is a lack of accepted and validated methods for lipid extract quality and quantity assessment prior to LC-MS. Fourier-Transform Infrared Spectroscopy (FTIR) has been reported for quantification of pure lipids. However, the impact of complex lipid sample complexity and purity on total lipid quantification accuracy has not been investigated. Here, we report comprehensive assessment of the sample matrix on the accuracy of lipid quantification using Attenuated Total Reflectance (ATR)-FTIR and establish a simple workflow for lipidomics sample quantification. We show that both pure and complex lipids show characteristic FTIR vibrations of CH- and C=O-stretching vibrations, with a quantitative range of 40−3000 ng and a limit of detection of 12 ng, but sample extraction method and local baseline subtraction during FTIR spectral processing significantly impact lipid quantification via CH stretching. To facilitate sample quality screening, we developed the Lipid Quality (LiQ) score from a spectral library of common contaminants, using a ratio of peak heights between CH stretching vibrations maxima and the collective vibrations from amide/amine, CH-stretching minima and sugar moieties. Taking all tested parameters together, we propose a rapid FTIR workflow for routine lipidomics sample quality and quantity assessment and tested this workflow by comparing to the total LC-MS intensity of targeted lipidomics of 107 human plasma lipid extracts. Exclusion of poor-quality samples based on LiQ score improved the correlation between FTIR and LC-MS quantification. The uncertainty of absolute quantification by FTIR was estimated using a 795 ng SPLASH LipidoMix standard to be <10%. With low sample requirement, we anticipate this simple and rapid method will enhance lipidomics workflow by enabling accurate total lipid quantification and normalization of lipid quantity for MS analysis.


Assuntos
Lipidômica , Lipídeos , Amidas , Aminas , Humanos , Lipídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Açúcares
4.
Biomedicines ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203562

RESUMO

Fourier transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently used in proof-of-concept cohort studies for COVID-19 saliva screening. However, the biological basis of the proposed technology has not been established. To investigate underlying pathophysiology, we conducted controlled infection experiments on Vero E6 cells in vitro and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or 75% (v/v) Trizol for attenuated total reflectance (ATR)-FTIR spectroscopy and proteomics, or RT-PCR, respectively. Controlled infection with UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite a lack of viral replication, determined by RT-PCR or a cell culture infectious dose 50% assay. Nevertheless, SARS-CoV-2 infection induced additional FTIR signals over UV-inactivated SARS-CoV-2 infection in both cell and mouse models, which correspond to aggregated proteins and RNA. Proteomics of mouse oral lavage revealed increased secretion of kallikreins and immune modulatory proteins. Next, we collected saliva from a cohort of human participants (n = 104) and developed a predictive model for COVID-19 using partial least squares discriminant analysis. While high sensitivity of 93.48% was achieved through leave-one-out cross-validation, COVID-19 patients testing negative on follow-up on the day of saliva sampling using RT-PCR was poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to the misclassification of COVID-19 negatives. Finally, meta-analysis revealed that SARS-CoV-2 induced increases in the amide II band in all arms of this study and in recently published cohort studies, indicative of altered ß-sheet structures in secreted proteins. In conclusion, this study reveals a consistent secretory pathophysiological response to SARS-CoV-2, as well as a simple, robust method for COVID-19 saliva screening using ATR-FTIR.

5.
Anal Chem ; 93(30): 10391-10396, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279898

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to ravage the world, with many hospitals overwhelmed by the large number of patients presenting during major outbreaks. A rapid triage for COVID-19 patient requiring hospitalization and intensive care is urgently needed. Age and comorbidities have been associated with a higher risk of severe COVID-19 but are not sufficient to triage patients. Here, we investigated the potential of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy as a rapid blood test for classification of COVID-19 disease severity using a cohort of 160 COVID-19 patients. A simple plasma processing and ATR-FTIR data acquisition procedure was established using 75% ethanol for viral inactivation. Next, partial least-squares-discriminant analysis (PLS-DA) models were developed and tested using data from 130 and 30 patients, respectively. Addition of the ATR-FTIR spectra to the clinical parameters (age, sex, diabetes mellitus, and hypertension) increased the area under the ROC curve (C-statistics) for both the training and test data sets, from 69.3% (95% CI 59.8-78.9%) to 85.7% (78.6-92.8%) and 77.8% (61.3-94.4%) to 85.1% (71.3-98.8%), respectively. The independent test set achieved 69.2% specificity (42.4-87.3%) and 94.1% sensitivity (73.0-99.0%). Diabetes mellitus was the strongest predictor in the model, followed by FTIR regions 1020-1090 and 1588-1592 cm-1. In summary, this study demonstrates the potential of ATR-FTIR spectroscopy as a rapid, low-cost COVID-19 severity triage tool to facilitate COVID-19 patient management during an outbreak.


Assuntos
COVID-19 , Proteínas Mutadas de Ataxia Telangiectasia , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , SARS-CoV-2 , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Clin Transl Med ; 11(4): e381, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931969

RESUMO

BACKGROUND: Caveolae proteins play diverse roles in cancer development and progression. In prostate cancer, non-caveolar caveolin-1 (CAV1) promotes metastasis, while CAVIN1 attenuates CAV1-induced metastasis. Here, we unveil a novel mechanism linking CAV1 to selective loading of exosomes with metastasis-promoting microRNAs. RESULTS: We identify hnRNPK as a CAV1-regulated microRNA binding protein. In the absence of CAVIN1, non-caveolar CAV1 drives localisation of hnRPNK to multi-vesicular bodies (MVBs), recruiting AsUGnA motif-containing miRNAs and causing their release within exosomes. This process is dependent on the lipid environment of membranes as shown by cholesterol depletion using methyl-ß-cyclodextrin or by treatment with n-3 polyunsaturated fatty acids. Consistent with a role in bone metastasis, knockdown of hnRNPK in prostate cancer PC3 cells abolished the ability of PC3 extracellular vesicles (EV) to induce osteoclastogenesis, and biofluid EV hnRNPK is elevated in metastatic prostate and colorectal cancer. CONCLUSIONS: Taken together, these results support a novel pan-cancer mechanism for CAV1-driven exosomal release of hnRNPK and associated miRNA in metastasis, which is modulated by the membrane lipid environment.


Assuntos
Caveolina 1/metabolismo , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Masculino , RNA Neoplásico/metabolismo
7.
Methods Mol Biol ; 2054: 159-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482455

RESUMO

MicroRNAs (miRNAs) are 22-nucleotide RNA sequences that regulate up to 60% of the mammalian transcriptome. Although canonical miRNA-induced silencing complex-mediated messenger RNA degradation occurs in the cytoplasm, miRNAs have been described in other subcellular compartments with potentially novel functions. Currently, there are limited methodologies for visualizing RNA locations within cells to elucidate mechanisms and pathways of miRNA biogenesis, transport, and function. Here, we describe a simple and rapid miRNA in situ hybridization method that can be combined with standard immunofluorescence procedures for subcellular localization of mature and precursor miRNAs.


Assuntos
Hibridização In Situ/métodos , MicroRNAs/metabolismo , Imagem Molecular/métodos , Técnica Indireta de Fluorescência para Anticorpo/instrumentação , Corantes Fluorescentes/química , Células HEK293 , Humanos , Hibridização In Situ/instrumentação , Indóis/química , Microscopia Confocal/métodos , Imagem Molecular/instrumentação , Frações Subcelulares/metabolismo
8.
Sci Rep ; 9(1): 8541, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189969

RESUMO

During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-ß and its type 1 receptor (TGFBR1) mRNA expression, TGF-ß-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-ß-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-ß signaling.


Assuntos
Colágeno/biossíntese , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Receptor Notch1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Colágeno/genética , Células Estreladas do Fígado , Humanos , Camundongos , MicroRNAs/genética , Receptor Notch1/genética , Fator de Crescimento Transformador beta/genética
9.
Expert Rev Proteomics ; 15(12): 1053-1063, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30403891

RESUMO

INTRODUCTION: Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.


Assuntos
Microdomínios da Membrana/metabolismo , Proteoma/metabolismo , Colesterol/metabolismo , Humanos , Microdomínios da Membrana/química , Proteínas de Membrana/metabolismo , Proteoma/química , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...