Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593434

RESUMO

Precise control over polymer microstructure can enable the molecular tunability of material properties and represents a significant challenge in polymer chemistry. Stereoblock copolymers are some of the simplest stereosequenced polymers, yet the synthesis of stereoblock polyesters from prochiral or racemic monomers outside of "simple" isotactic stereoblocks remains limited. Herein, we report the development of irreversible chain-transfer ring-opening polymerization (ICT-ROP), which overcomes the fundamental limitations of single catalyst approaches by using transmetalation (e.g., alkoxide-chloride exchange) between two catalysts with distinct stereoselectivities as a means to embed temporally controlled multicatalysis in ROP. Our combined small-molecule model and catalytic polymerization studies lay out a clear molecular basis for ICT-ROP and are exploited to access the first examples of atactic-syndiotactic stereoblock (at-sb-st) polyesters, at-sb-st polyhydroxyalkanoates (PHAs). We achieve high levels of control over molecular weight, tacticity, monomer composition, and block structures in a temporally controlled manner and demonstrate that stereosequence control leads to polymer tensile properties that are independent of thermal properties.

2.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503758

RESUMO

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Assuntos
Sulfeto de Hidrogênio , Piranos , Compostos de Sulfidrila , Sulfeto de Hidrogênio/metabolismo , Tionas , Sulfetos/metabolismo , Enxofre/metabolismo , Oxirredução , Proteínas/metabolismo
3.
Redox Biol ; 70: 103045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38245971

RESUMO

Polysulfides have received increased interest in redox biology due to their role as the precursors of H2S and persulfides. However, the compounds that are suitable for biological investigations are limited to cysteine- and glutathione-derived polysulfides. In this work, we report the preparation and evaluation of a novel polysulfide derived from thioglucose, which represents the first carbohydrate-based polysulfide. This compound, thioglucose tetrasulfide (TGS4), showed excellent stability and water solubility. H2S and persulfide production from TGS4, as well as its associated antioxidative property were also demonstrated. Additionally, TGS4 was demonstrated to significantly induce cellular sulfane sulfur level increase, in particular for the formation of hydropersulfides/trisulfides. These results suggest that TGS4 is a useful tool for polysulfide research.


Assuntos
Sulfeto de Hidrogênio , Sulfetos/farmacologia , Antioxidantes , Oxirredução , Glutationa/metabolismo
4.
J Org Chem ; 88(24): 16854-16863, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016079

RESUMO

Isoxazolines and 4-membered heterocycles are significant structural motifs in numerous synthetic intermediates and natural products. [3 + 2] Cycloadditions between enol ethers and nitrile oxides have been well studied; however, nitrile oxide cycloadditions with 4-membered heterocycles to give spiroisoxazolines are unreported. Here, we showcase the regio- and diastereoselective [3 + 2] nitrile oxide cycloadditions of 2-methyleneoxetanes, -azetidines, and -thietanes to give an array of 1,6-dioxo-2-azaspiro[3.4]oct-2-enes and related spirocycles. 2D NMR experiments suggested that most of the observed diastereoselectivities were dictated by steric interactions; however, dipolarophiles with H bonding donors reversed the stereochemical outcome. X-ray crystallography confirmed the structural assignments.

5.
Inorg Chem ; 62(4): 1362-1376, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36490364

RESUMO

Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.


Assuntos
Ciclamos , Compostos Radiofarmacêuticos/química , Radioisótopos de Cobre/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Quelantes/química , Alquilação
6.
Chem Sci ; 13(35): 10336-10341, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277625

RESUMO

An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,ß-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations (k 1 = 0.64 ± 0.019 s-1 and 4.1 s-1, respectively). The effects of steric and electronic properties of both the tetrazine and α,ß-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a "release-then-click" strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging.

7.
J Am Chem Soc ; 144(37): 17295-17306, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083877

RESUMO

Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.


Assuntos
Peróxidos , Praseodímio , Éteres de Coroa , Ésteres , Etilenoglicóis , Ligantes , Metalocenos , Metais/química , Metanol , Oxirredução , Oxigênio/química , Fosfatos , Substâncias Redutoras
8.
J Am Chem Soc ; 144(27): 12501-12509, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771170

RESUMO

The hydridic hydrogen in nanogold catalysts has long been postulated as an important intermediate in hydrogenation reactions, but it has not been directly observed. Here, we report the synthesis of a new undecagold cluster with a bidentate phosphine ligand. The chelating effects of the bidentate ligand result in a more symmetric Au11 core with two labile Cl- ligands that can exchange with BH4-, leading to a novel undecagold hydride cluster. The new hydride cluster is discovered to readily undergo hydroauration reaction with alkynes containing electron-withdrawing groups, forming key gold-alkenyl semihydrogenation intermediates, which can be efficiently and selectively converted to Z-alkenes under acidic conditions. All key reaction intermediates are isolated and characterized, providing atomic-level insights into the active sites and mechanisms of semihydrogenation reactions catalyzed by gold-based nanomaterials. The hydridic hydrogen in the undecagold cluster is found to be the key to prevent over hydrogenation of alkenes to alkanes. The current study provides fundamental insights into hydrogenation chemistry enabled by gold-based nanomaterials and may lead to the development of efficient catalysts for selective semihydrogenation or functionalization of alkynes.


Assuntos
Alcinos , Ouro , Alcenos/química , Alcinos/química , Ouro/química , Hidrogênio , Ligantes
9.
Angew Chem Int Ed Engl ; 61(22): e202201211, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263017

RESUMO

Despite its prevalence in the environment, the chemistry of the Ti4+ ion has long been relegated to organic solutions or hydrolyzed TiO2 polymorphs. A knowledge gap in stabilizing molecular Ti4+ species in aqueous environments has prevented the use of this ion for various applications such as radioimaging, design of water-compatible metal-organic frameworks (MOFs), and aqueous-phase catalysis applications. Herein, we show a thorough thermodynamic screening of bidentate chelators with Ti4+ in aqueous solution, as well as computational and structural analyses of key compounds. In addition, the hexadentate analogues of catechol (benzene-1,2-diol) and deferiprone (3-hydroxy-1,2-dimethyl-4(1H)-pyridone), TREN-CAM and THPMe respectively, were assessed for chelation of the 45 Ti isotope (t1/2 =3.08 h, ß+ =85 %, Eß+ =439 keV) towards positron emission tomography (PET) imaging applications. Both were found to have excellent capacity for kit-formulation, and [45 Ti]Ti-TREN-CAM was found to have remarkable stability in vivo.


Assuntos
Compostos Organometálicos , Titânio , Catálise , Quelantes , Hidrólise , Compostos Organometálicos/química , Titânio/química , Água/química
10.
Chem Commun (Camb) ; 58(17): 2854-2857, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35137743

RESUMO

N-Oxides can amplify the performance of a lanthanum aminobisphenolate catalyst in the ring-opening polymerization (ROP) of rac-ß-butyrolactone (rac-BBL) to unprecedented levels (TOF/Pm; At RT: 1900 h-1/0.73, At -30 °C: 200 h-1/0.82). Experiments and computations establish donor electronics control catalyst activity, while donor sterics control catalyst deactivation.

11.
Inorg Chem ; 60(17): 13376-13387, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382778

RESUMO

A new template condensation reaction has been discovered in a mixture of Pt(II), thiobenzamide, and base. Four complexes of the general form [Pt(ctaPhR)2], R = CH3 (1a), H (1b), F (1c), Cl (1d), cta = condensed thioamide, have been prepared under similar conditions and thoroughly characterized by 1H NMR and UV-vis-NIR spectroscopy, (spectro)electrochemistry, elemental analysis, and single-crystal X-ray diffraction. The ligand is redox active and can be reduced from the initial monoanion to a dianionic and then trianionic state. Chemical reduction of 1a with [Cp2Co] yielded [Cp2Co]2[Pt(ctaPhCH3)2], [Cp2Co]2[1a], which has been similarly characterized with the addition of EPR spectroscopy and SQUID magnetization. The singly reduced form containing [1a]1-, (nBu4N)[Pt(ctaPhCH3)2], has been generated in situ and characterized by UV-vis and EPR spectroscopies. DFT studies of 1b, [1b]1-, and [1b]2- confirm the location of additional electrons in exclusively ligand-based orbitals. A detailed analysis of this redox-active ligand, with emphasis on the characteristics that favor noninnocent behavior in six-membered chelate rings, is included.

12.
Angew Chem Int Ed Engl ; 60(36): 19836-19842, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101958

RESUMO

Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. µ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of µ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.


Assuntos
Cálcio/química , Cobre/química , Sítios de Ligação , Íons/química , Estrutura Molecular
13.
Acc Chem Res ; 54(11): 2637-2648, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014657

RESUMO

Shibasaki's rare earth alkali metal BINOLate (REMB) framework has provided chemists with a general catalyst platform to access a range of enantioenriched small molecules from the single, commercially available pro-ligand (R)- or (S)-BINOL. A defining feature of these heterobimetallic frameworks is the high level of catalyst tunability, achieved through the simple modulation of the central rare-earth cation and peripheral alkali metal cations. While this family of multifunctional catalysts displays impressive generality and catalytic capability, detailed mechanistic understanding of these complex, multimetallic systems was lacking prior to our investigations. This backdrop served as initial inspiration for our investigations of this privileged class of complexes over the past decade, which have led to new and exciting advances in catalysis and beyond.In this Account, we describe our investigations using Shibasaki's framework focusing on the central metal-ion, the BINOLate ligands, and the secondary sphere cations. Our studies began with an investigation into the Lewis acidity of the complexes, where we demonstrated that Lewis bases readily coordinate to REMB frameworks when lithium occupies the secondary coordination sphere. This observation was contrasted by the complexes containing sodium or potassium in the secondary coordination sphere, as the rare earth cation is evidently less accessible for substrate binding. Our efforts in understanding the ligand exchange of the complexes enabled the discovery that associative processes dominate the mechanism of ligand exchange and LA/LA (Lewis acid/Lewis acid) and LA/BB (Lewis acid/Brønsted base) catalysis by the REMB frameworks. Replacing metal cations in the secondary coordination sphere with the N,N,N',N'-tetramethylguanidinium cation delivered an effective precatalyst that is air and water stable over the course of 6 months.To expand the reactivity of the REMB, we investigated the ability of UIV cations to occupy the primary coordination sphere and ZnEt+ and Cu(DBU)+ cations to occupy the secondary coordination sphere. Synthesizing the REMB complexes using the thiol congener monothioBINOL provided an unusual anionic REMB framework, driven by the oxophilicity of the lithium cations. Using the REMB as a platform for investigating the CeIII/CeIV redox couple, we demonstrated that, while oxidative cerium functionalization is observed in the case of lithium containing REMBs, salt elimination is observed in the sodium, potassium, and cesium containing REMBs. Furthermore, we found that while the rate of heterogeneous electron transfer for CeIII was ks(CsI) > ks(KI) > ks(NaI) > ks(LiI), the rates of reaction with the oxidant trityl chloride trended in the opposite order with kobs(LiI) ≫ kobs(NaI) > kobs(KI) > kobs(CsI). We attribute this to the ability to form inner-sphere complexes with the oxidant, rather than differences in redox potential or reorganization energies.Applying our knowledge in ligand exchange and redox behavior of Ce containing REMB complexes, we detailed the mechanism for oxidation of the heterochiral cerium REMB frameworks, reiterating the importance of the formation of inner-sphere complexes in the oxidation chemistry of cerium. There are many different avenues for both organic and inorganic investigation of Shibasaki's REMB framework, and our works have demonstrated the richness of the structural chemistry and properties of this framework that inform mechanism and properties of these privileged catalysts.


Assuntos
Complexos de Coordenação/química , Metais Terras Raras/química , Naftóis/química , Compostos Orgânicos/síntese química , Catálise , Complexos de Coordenação/síntese química , Estrutura Molecular , Compostos Orgânicos/química , Estereoisomerismo
14.
J Am Chem Soc ; 143(4): 2115-2122, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493397

RESUMO

Enabling catalysts to promote multistep chemical reactions in a tandem fashion is an exciting new direction for the green chemistry synthesis of materials. Nanoparticle (NP) catalysts are particularly well suited for tandem reactions due to the diverse surface-active sites they offer. Here, we report that AuPd alloy NPs, especially 3.7 nm Au42Pd58 NPs, catalyze one-pot reactions of formic acid, diisopropoxy-dinitrobenzene, and terephthalaldehyde, yielding a very pure thermoplastic rigid-rod polymer, polybenzoxazole (PBO), with a molecular weight that is tunable from 5.8 to 19.1 kDa. The PBO films are more resistant to hydrolysis and possess thermal and mechanical properties that are superior to those of commercial PBO, Zylon. Cu NPs are also active in catalyzing tandem reactions to form PBO when formic acid is replaced with ammonia borane. Our work demonstrates a general approach to the green chemistry synthesis of rigid-rod polymers as lightweight structural materials for broad thermomechanical applications.

15.
Inorg Chem ; 59(22): 16095-16108, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33112609

RESUMO

A growing number of copper(II) complexes have been identified as suitable candidates for biomedical applications. Here, we show that the biocompatibility and stability of copper(II) complexes can be tuned by directed ligand design and complex geometry. We demonstrate that azamacrocycle-based chelators that envelope copper(II) in a five-coordinate, distorted trigonal-bipyramidal structure are more chemically inert to redox-mediated structural changes than their six-coordinate, Jahn-Teller-distorted counterparts, as evidenced by electrochemical, crystallographic, electron paramagnetic resonance, and density functional theory studies. We further validated our hypothesis of enhanced inertness in vitro and in vivo by employing Cu-64 radiolabeling of bifunctional analogues appended to a prostate-specific membrane antigen targeting dipeptide. The corresponding Cu-64 complexes were tested for stability in vitro and in vivo, with the five-coordinate system demonstrating the greatest metabolic stability among the studied picolinate complex series.


Assuntos
Quelantes/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Ácidos Picolínicos/metabolismo , Quelantes/química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Ácidos Picolínicos/química
16.
Inorg Chem ; 59(20): 14827-14837, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32986427

RESUMO

We report the synthesis, characterization, and reactivity of a new low-symmetry ß-diketimine featuring a pendant amino(methyl)phenol donor and its corresponding heteroleptic rare-earth (RE) complexes. This includes the first structurally characterized examples of alcoholysis and insertion from an isolated REIII amide in a ß-diketimine framework. The flexible methylene linkage leads to REIII complexes with tunable dynamic solution behavior that defines their stoichiometric and catalytic reactivity. The addition of a strong neutral donor ligand, tricyclohexylphosphine oxide, suppresses a prevalent catalyst degradation pathway (base-promoted elimination) and dramatically enhances the catalyst performance in the stereospecific ring-opening polymerization of rac-ß-butyrolactone. Our results further demonstrate the importance of ligand reorganization in the stoichiometric and catalytic activity of REIII ions.

17.
Chem Sci ; 11(31): 8184-8195, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34123089

RESUMO

Isoenriched poly-3-hydroxybutyrate (P3HB) is a biodegradable material with properties similar to isotactic polypropylene, yet efficient routes to this material are lacking after 50+ years of extensive efforts in catalyst design. In this contribution, a novel lanthanum aminobisphenolate catalyst (1-La) can access isoenriched P3HB through the stereospecific ring-opening polymerization (ROP) of rac-ß-butyrolactone (rac-BBL). Replacing the tethered donor group of a privileged supporting ligand with a non-coordinating benzyl substituent generates a catalyst whose reactivity and selectivity can be tuned with inexpensive achiral neutral donor ligands (e.g. phosphine oxides, OPR3). The 1-La/OPR3 (R = n-octyl, Ph) systems display high activity and are the most isoselective homogeneous catalysts for the ROP of rac-BBL to date (0 °C: P m = 0.8, TOF ∼190 h-1). Combined reactivity and spectroscopic studies provide insight into the active catalyst structure and ROP mechanism. Both 1-La(TPPO)2 and a structurally related catalyst with a tethered donor group (2-Y) operate under chain-end stereocontrol; however, 2-RE favors formation of P3HB with opposite tacticity (syndioenriched) and its ROP activity and selectivity are totally unaffected by added neutral donor ligands. Our studies uncover new roles for neutral donor ligands in stereospecific ROP, including suppression of chain-scission events, and point to new opportunities for catalyst design.

18.
Dalton Trans ; 48(43): 16460, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647082

RESUMO

Correction for 'Synthesis of novel copper-rare earth BINOLate frameworks from a hydrogen bonding DBU-H rare earth BINOLate complex' by Grace B. Panetti, et al., Dalton Trans., 2018, 47, 14408-14410.

19.
Dalton Trans ; 47(41): 14408-14410, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30183038

RESUMO

The preparation of a novel H-bonding DBU-H+ BINOLate Rare Earth Metal complex enabled the synthesis of the first copper-Rare Earth Metal BINOLate complex (CuDBU-REMB). CuDBU-REMB was compared to the analogous Li complex using X-ray crystallography and Exchange NMR spectroscopy (EXSY). The results provide insight into the role of the secondary metal cation in the framework's stabilization.

20.
Chem Sci ; 7(7): 4537-4547, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155100

RESUMO

The CeIII/IV couple is useful for many applications in organic, inorganic, and materials chemistry. However, attaining a general method to access both oxidations states through reversible solution redox chemistry remains challenging. Herein we report the synthesis, characterization, and oxidation chemistry of the novel Ce/Li REMB heterochiral diastereomer, 1-Ce(het). The solution exchange processes of 1-RE(het) (RE = Ce and Yb) were investigated to estimate rates of ligand and cation exchange relevant in homochiral and heterochiral frameworks. A detailed mechanistic investigation following the solution dynamics of 1-Ce(het) revealed reactivity controlled both by ligand reorganization and redistribution processes. Ligand reorganization was responsible for the kinetics associated with the chemical oxidation reaction, whereas ligand redistribution and exchange dictated the isolated products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...