Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomed Plus ; 3(4)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38037612

RESUMO

Background: Moringa (Moringa oleifera Lam.) seed extract (MSE) and its primary bioactive compound, moringa isothiocyanate-1(MIC-1), mitigate inflammation, oxidative stress, diabetes, and cancer in the in vivo rodent models following oral application. Purpose: To investigate the topical anti-inflammatory activity of MSE and purified MIC-1 in a TPA-induced mouse ear edema model. Study Design: The present study elucidates the topical anti-inflammatory effects and mechanisms of action of MSE, containing 38% of MIC-1 and purified MIC-1 using a mouse ear edema model utilizing 12-O-tetradecanoylphorbol-13-acetate (TPA), as the pro-inflammatory agent. Methods: A time-dependent and dose-dependent response was determined by pretreating CD-1 mice with various doses of MSE and MIC-1, positive control, dexamethasone, or vehicle control, followed by TPA, and the subsequent difference in ear thickness was measured using digital Vernier calipers. The effective doses of MSE and MIC-1were then selected to evaluate the change in weight of the ears using 6 mm biopsy punches and the results were confirmed by microscopy. Inflammatory markers were quantified with Luminex multiplex immunoassay. Results: MSE and MIC-1 were effective in a dose-dependent manner in a TPA-induced ear edema model, causing a reduction in ear thickness and a 48% and 49% decrease in ear punch weight, respectively. MSE and MIC-1 also caused a reduction in the levels of cytokine and chemokines, interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC) in the ear tissue. MSE and MIC-1 reduced IL-6 expression by 84% and 78%, MCP1 by 74% and 73%, and KC by 56% and 43%, respectively. Additionally, the anti-inflammatory effect of MSE and MIC-1 was confirmed by hematoxylin and eosin (H&E) staining, used to assess the thickness of the ear swelling. MSE significantly reduced the thickness of the ears by 20% compared to TPA. Conclusion: These results reveal the topical anti-inflammatory properties of MSE, and MIC-1 likely transmitted via the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways as mentioned in previous studies. This work also suggests therapeutic uses of MSE and/or MIC-1 for skin inflammation.

2.
Pharmaceutics ; 14(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297639

RESUMO

The fungal disease of the nail, onychomycosis, which is also the most prevalent nail disturbance, demands effective topical treatment options considering the possible adverse effects of systemic antifungal therapy. The current work is focused on development of an adhesive and resistant, drug-delivering and permeation-enhancing polymeric film containing econazole nitrate (ECN) for topical antifungal treatment. The development of the lacquer formulation was guided by the Quality by Design approach to achieve the critical quality attributes needed to obtain the product of desired quality. Eudragit RSPO at 10% w/w was found to be the ideal adhesive polymer for the application and an optimal permeation-enhancing lacquer formulation was achieved by the optimization of other formulation excipients, such as plasticizer and the solvent system. Additionally, novel experimental enhancements introduced to the research included refined D50 drying time and drying rate tests for lacquer characterization as well as a multi-mechanism permeation-enhancing pre-treatment. Moreover, a practical implication was provided by a handwashing simulation designed to test the performance of the lacquer during actual use. In vitro drug release testing and ex vivo nail permeation testing demonstrated that the optimized nail lacquer performed better than control lacquer lacking the permeation enhancer by achieving a faster and sustained delivery of ECN. It can be concluded that this is a promising drug delivery system for topical antifungal treatment of onychomycotic nails, and the novel characterization techniques may be adapted for similar formulations in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA