Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(18): 1873-1877, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457663

RESUMO

ABSTRACT: High prevalence of IDH mutations in seronegative rheumatoid arthritis (RA) with myeloid neoplasm, elevated 2-hydroxyglutarate, dysregulated innate immunity, and proinflammatory microenvironment suggests causative association between IDH mutations and seronegative RA. Our findings merit investigation of IDH inhibitors as therapeutics for seronegative IDH-mutated RA.


Assuntos
Artrite Reumatoide , Imunidade Inata , Isocitrato Desidrogenase , Mutação , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Isocitrato Desidrogenase/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
2.
ACS Appl Mater Interfaces ; 16(8): 9736-9748, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349780

RESUMO

Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Micelas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Doxorrubicina/química
3.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263327

RESUMO

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Assuntos
Autofagia , Inflamação , Humanos , Inflamação/metabolismo , Citosol/metabolismo , Transporte Ativo do Núcleo Celular , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteases Dependentes de ATP/metabolismo
4.
Int J Pharm ; 651: 123790, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190951

RESUMO

Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Cisplatino , Impressão Tridimensional
5.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188968, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657683

RESUMO

The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.


Assuntos
Melaninas , Melanoma , Humanos , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Pró-Opiomelanocortina , Linhagem Celular Tumoral , Tirosina , Inibidores Enzimáticos , Hormônio Adrenocorticotrópico
6.
Cancer Discov ; 13(2): 496-515, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36355448

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH) are mutated in multiple cancers and drive production of (R)-2-hydroxyglutarate (2HG). We identified a lipid synthesis enzyme [acetyl CoA carboxylase 1 (ACC1)] as a synthetic lethal target in mutant IDH1 (mIDH1), but not mIDH2, cancers. Here, we analyzed the metabolome of primary acute myeloid leukemia (AML) blasts and identified an mIDH1-specific reduction in fatty acids. mIDH1 also induced a switch to b-oxidation indicating reprogramming of metabolism toward a reliance on fatty acids. Compared with mIDH2, mIDH1 AML displayed depletion of NADPH with defective reductive carboxylation that was not rescued by the mIDH1-specific inhibitor ivosidenib. In xenograft models, a lipid-free diet markedly slowed the growth of mIDH1 AML, but not healthy CD34+ hematopoietic stem/progenitor cells or mIDH2 AML. Genetic and pharmacologic targeting of ACC1 resulted in the growth inhibition of mIDH1 cancers not reversible by ivosidenib. Critically, the pharmacologic targeting of ACC1 improved the sensitivity of mIDH1 AML to venetoclax. SIGNIFICANCE: Oncogenic mutations in both IDH1 and IDH2 produce 2-hydroxyglutarate and are generally considered equivalent in terms of pathogenesis and targeting. Using comprehensive metabolomic analysis, we demonstrate unexpected metabolic differences in fatty acid metabolism between mutant IDH1 and IDH2 in patient samples with targetable metabolic interventions. See related commentary by Robinson and Levine, p. 266. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Glutaratos/metabolismo , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
8.
Methods Mol Biol ; 2535: 211-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867233

RESUMO

The ability of the cancer cells to survive hostile environment depends on their cellular stress response mechanisms. These mechanisms also help them to develop resistance to chemotherapies. Autophagy and more specifically organelle specific autophagy is one such adaptive mechanism that promotes drug resistance in cancer cells. Endoplasmic reticulum-specific autophagy or ER-phagy has been more recently described to overcome ER-stress through the degradation of damaged ER. ER-resident proteins such as FAM134B act as ER-phagy receptors to specifically target damaged ER for degradation through autophagy. Moreover, we had recently deciphered that ER-phagy facilitates cancer cell survival during hypoxic stress and we predict that this process could play a critical role in the development of drug resistance in cancer cells. Therefore, here, we provide a lay description of how ER-phagy could be investigated biochemically by Western blot analysis and silencing ER-phagy receptor genes using small interfering RNAs (siRNA).


Assuntos
Retículo Endoplasmático , Neoplasias , Autofagia/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
9.
Nat Commun ; 13(1): 2614, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551192

RESUMO

The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Adulto , Mutação em Linhagem Germinativa , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
10.
Cell Death Dis ; 13(4): 357, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436985

RESUMO

In the tumor microenvironment, cancer cells experience hypoxia resulting in the accumulation of misfolded/unfolded proteins largely in the endoplasmic reticulum (ER). Consequently, ER proteotoxicity elicits unfolded protein response (UPR) as an adaptive mechanism to resolve ER stress. In addition to canonical UPR, proteotoxicity also stimulates the selective, autophagy-dependent, removal of discrete ER domains loaded with misfolded proteins to further alleviate ER stress. These mechanisms can favor cancer cell growth, metastasis, and long-term survival. Our investigations reveal that during hypoxia-induced ER stress, the ER-phagy receptor FAM134B targets damaged portions of ER into autophagosomes to restore ER homeostasis in cancer cells. Loss of FAM134B in breast cancer cells results in increased ER stress and reduced cell proliferation. Mechanistically, upon sensing hypoxia-induced proteotoxic stress, the ER chaperone BiP forms a complex with FAM134B and promotes ER-phagy. To prove the translational implication of our mechanistic findings, we identified vitexin as a pharmacological agent that disrupts FAM134B-BiP complex, inhibits ER-phagy, and potently suppresses breast cancer progression in vivo.


Assuntos
Autofagia , Neoplasias da Mama , Autofagia/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Hipóxia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microambiente Tumoral
11.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35443029

RESUMO

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Ceramidas/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Front Med (Lausanne) ; 8: 758311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805224

RESUMO

The endoplasmic reticulum (ER) is not only responsible for protein synthesis and folding but also plays a critical role in sensing cellular stress and maintaining cellular homeostasis. Upon sensing the accumulation of unfolded proteins due to perturbation in protein synthesis or folding, specific intracellular signaling pathways are activated, which are collectively termed as unfolded protein response (UPR). UPR expands the capacity of the protein folding machinery, decreases protein synthesis and enhances ER-associated protein degradation (ERAD) which degrades misfolded proteins through the proteasomes. More recent evidences suggest that UPR also amplifies cytokines-mediated inflammatory responses leading to pathogenesis of inflammatory diseases. UPR signaling also activates autophagy; a lysosome-dependent degradative pathwaythat has an extended capacity to degrade misfolded proteins and damaged ER. Thus, activation of autophagy limits inflammatory response and provides cyto-protection by attenuating ER-stress. Here we review the mechanisms that couple UPR, autophagy and cytokine-induced inflammation that can facilitate the development of novel therapeutic strategies to mitigate cellular stress and inflammation associated with various pathologies.

13.
PLoS Pathog ; 17(9): e1009943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555129

RESUMO

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.


Assuntos
Glicólise/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Salmonelose Animal/metabolismo , Animais , Perfilação da Expressão Gênica , Metabolômica , Camundongos , Salmonella typhimurium/metabolismo
14.
Front Immunol ; 11: 588724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117402

RESUMO

SARS-CoV-2 infection is a new threat to global public health in the 21st century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE2). The progression of Covid-19 has been divided into three main stages: stage I-viral response, stage II-pulmonary phase, and stage III-hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B2-adrenergic receptors (B2ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B2AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFNγ. Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B2AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Síndrome da Liberação de Citocina/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pandemias , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Células Th17/imunologia
15.
J Immunol ; 205(9): 2456-2467, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948684

RESUMO

Salmonella enterica serovar Typhimurium (S Typhimurium) is a Gram-negative bacterium that induces cell death of macrophages as a key virulence strategy. We have previously demonstrated that the induction of macrophage death is dependent on the host's type I IFN (IFN-I) response. IFN-I signaling has been shown to induce tripartite motif (TRIM) 21, an E3 ubiquitin ligase with critical functions in autoimmune disease and antiviral immunity. However, the importance and regulation of TRIM21 during bacterial infection remains poorly understood. In this study, we investigated the role of TRIM21 upon S Typhimurium infection of murine bone marrow-derived macrophages. Although Trim21 expression was induced in an IFN-I-dependent manner, we found that TRIM21 levels were mainly regulated posttranscriptionally. Following TLR4 activation, TRIM21 was transiently degraded via the lysosomal pathway by chaperone-mediated autophagy (CMA). However, S Typhimurium-induced mTORC2 signaling led to phosphorylation of Akt at S473, which subsequently impaired TRIM21 degradation by attenuating CMA. Elevated TRIM21 levels promoted macrophage death associated with reduced transcription of NF erythroid 2-related factor 2 (NRF2)-dependent antioxidative genes. Collectively, our results identify IFN-I-inducible TRIM21 as a negative regulator of innate immune responses to S Typhimurium and a previously unrecognized substrate of CMA. To our knowledge, this is the first study reporting that a member of the TRIM family is degraded by the lysosomal pathway.


Assuntos
Autofagia Mediada por Chaperonas/imunologia , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium/imunologia , Animais , Imunidade Inata/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/imunologia
16.
Cell Death Differ ; 27(11): 2989-3003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32948836

RESUMO

Cytosolic nucleic acid sensors have a critical role in detecting endogenous nucleic acids to initiate innate immune responses during microbial infections and/or cell death. Several seminal studies over the past decade have delineated the conserved mechanism of cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the downstream signaling adapter stimulator of interferon genes (STING) in mediating innate immune signaling pathways as a host defense mechanism. Besides the predominant role in microbial infections and inflammatory diseases, there is an increased attention on alternative functional responses of cGAS-STING-mediated signaling. Here we review the complexity of interactions between the cGAS-STING signaling and cell death pathways. A better understanding of molecular mechanisms of this interplay is important with regard to the development of new therapeutics targeting cGAS-STING signaling in cancer, infectious, and chronic inflammatory diseases.


Assuntos
Morte Celular , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Animais , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Infecções/etiologia , Proteínas de Membrana/genética , Neoplasias/etiologia , Nucleotidiltransferases/genética
17.
Elife ; 92020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538777

RESUMO

Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.


Assuntos
Caenorhabditis elegans/metabolismo , Imunidade Inata , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Processamento Alternativo , Animais , Anti-Inflamatórios , Infecções Bacterianas/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Expressão Gênica , Células HeLa , Humanos , Longevidade/genética , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Transdução de Sinais , Staphylococcus aureus
18.
Front Oncol ; 10: 758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477956

RESUMO

Melanoma is the most aggressive type of skin cancer and resistance to the conventional chemotherapy is the major cause for its poor prognosis. Metabolic perturbations leading to increased production of reactive oxygen species activate NRF2-dependent anti-oxidative responses to survive oxidative stress. This protective function of NRF2 is the primary cause for therapy resistance in cancer as anti-cancer agents such as BRAF inhibitors also induce NRF2-dependent antioxidative response. We had reported that type I interferons produced upon activation of STING, abrogates NRF2 function. Therefore, we investigated if STING agonists such as the newly developed dimeric aminobenzimidazole (diABZI) could sensitize melanoma cells to the clinically used BRAF inhibitors. Our results reveal that pharmacological activation of STING by diABZI, down regulates NRF2-dependent anti-oxidative responses and potentiates cell-death in melanoma cells when used in combination with BRAF inhibitors.

19.
Cancer Treat Rev ; 88: 102043, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505806

RESUMO

Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer, autophagy play a role in the development and progression, while several studies describe it as one of the key processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as chemotherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices, mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy in drug resistance after targeted therapy in different types of cancers. We highlight positive results and limitations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Humanos , Imunotoxinas/farmacologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...