Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 168: 167-178, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301089

RESUMO

Around 143,000 chemicals find their fate in wastewater treatment plants in the European Union. Low efficiency on their removal at lab-based studies and even poorer performance at large scale experiments have been reported. Here, a coupled biological technology (bioaugmentation and composting) is proposed and proved for pharmaceutical active compounds degradation and toxicity reduction. The optimization was conducted through in situ inoculation of Penicillium oxalicum XD 3.1 and an enriched consortium (obtained from non-digested sewage sludge), into pilot scale piles of sewage sludge under real conditions. This bioaugmentation-composting system allowed a better performance of micropollutants degradation (21 % from the total pharmaceuticals detected at the beginning of the experiment) than a traditional composting process. Particularly, inoculation with P. oxalicum allowed the degradation of some recalcitrant compounds like carbamazepine, cotinine and methadone, and also produced better stabilization features in the mature compost (significant passivation of copper and zinc, higher macronutrients value, adequate physicochemical conditions for soil direct application and less toxic effect on germination) compared to the control and the enriched culture. These findings provide a feasible, alternative strategy to obtain a safer mature compost and a better removal of micropollutants performance at large scale.


Assuntos
Compostagem , Esgotos , Esgotos/química , Solo/química , Zinco , Preparações Farmacêuticas
2.
Environ Res ; 177: 108624, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422221

RESUMO

In the present study, physico-chemical characteristics, heavy metals content, odour emissions, microbial enumeration and enzymatic activities were analysed during industrial scale composting of sewage sludge partially pre-treated to evaluate the effect of a combined system of semi-permeable film and aeration on these parameters. The results related to physico-chemical parameters showed a decrease in total organic carbon (TOC), organic matter (OM), total carbon (TC) along the process. Volatile solids (VS) were also reduced, reaching 36% at 120 days, which is above the limit according to the current legislation. Similarly, metal content was found to be an important variable in the evolution of enzymatic activity, while lead (Pb), zinc (Zn), and nickel (Ni) were the most influential. Moreover, heavy metals were found below the limit of type B compost quality or European class 2 at the end of the process, which is suitable for agriculture soil. The odorous impact generated during the hydrolytic stage was reduced to an average value of 4 ouE/s. This suggests that, covered stage with the semi-permeable film, could be a viable solution to mitigate odour emissions. The highest temperature was reached at 10 days and it was favoured by semi-permeable film. Temperature promoted the presence of thermophilic bacteria and fungi and indicated an early biodegradation process mediated by microorganisms. Statistical analyses revealed a high correlation of physico-chemical variables with microbial activity. Thus, samples from the first 14 days were highly correlated with enzymatic activities such as ß-glucosidase (Ac-ßGlu), protease (Ac-Pr), and dehydrogenase (Ac-De), which have usually been involved in the hydrolysis of organic matter.


Assuntos
Compostagem , Metais Pesados , Odorantes/análise , Esgotos/microbiologia , Biodegradação Ambiental , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA