Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1192, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331907

RESUMO

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Masculino , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Aumento de Peso , Fatores de Crescimento de Fibroblastos/genética , Peso Corporal/fisiologia
2.
Am J Physiol Endocrinol Metab ; 325(4): E303-E309, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584611

RESUMO

Growth differentiation factor 15 (GDF15) is a stress-induced cytokine. Although the exact physiological function of GDF15 is not yet fully comprehended, the significant elevation of circulating GDF15 levels during gestation suggests a potential role for this hormone in pregnancy. This is corroborated by genetic association studies in which GDF15 and the GDF15 receptor, GDNF family receptor alpha like (GFRAL) have been linked to morning sickness and hyperemesis gravidarum (HG) in humans. Here, we studied GDF15 biology during pregnancy in mice, rats, macaques, and humans. In contrast to macaques and humans, mice and rats exhibited an underwhelming induction in plasma GDF15 levels in response to pregnancy (∼75-fold increase in macaques vs. ∼2-fold increase in rodents). The changes in circulating GDF15 levels were corroborated by the magnitude of Gdf15 mRNA and GDF15 protein expression in placentae from mice, rats, and macaques. These species-specific findings may help guide future studies focusing on GDF15 in pregnancy and on the evaluation of pharmacological strategies to interfere with GDF15-GFRAL signaling to treat severe nausea and HG.NEW & NOTEWORTHY In the present study pregnancy-induced changes in circulating growth differentiation factor 15 (GDF15) in rodents, rhesus macaques, and humans are mapped. In sum, it is demonstrated that humans and macaques exhibit a tremendous increase in placental and circulating GDF15 during pregnancy. In contrast, GDF15 is negligibly increased in pregnant mice and rats, questioning a physiological role for GDF15 in pregnancy in rodents.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Animais , Feminino , Humanos , Camundongos , Gravidez , Ratos , Citocinas , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Macaca mulatta/metabolismo , Obesidade/metabolismo , Placenta/metabolismo
3.
Biochem J ; 480(9): 607-627, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140888

RESUMO

Mitochondrial ß-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal ß-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and ß-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal ß-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.


Assuntos
Ácidos Graxos , Microcorpos , Microcorpos/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Fígado/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacologia
4.
Nat Metab ; 5(4): 677-698, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055619

RESUMO

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Assuntos
Depressores do Apetite , Camundongos , Masculino , Animais , Depressores do Apetite/farmacologia , Ácido Láctico , Termogênese/fisiologia , Sódio , Concentração Osmolar
5.
urol. colomb. (Bogotá. En línea) ; 32(1): 3-8, 2023. tab, graf
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1510834

RESUMO

Objective: to evaluate the performance statistics of average flow (Qave), voiding time (Vtime), and time to maximum flow (TQmax), in addition to maximum flow (Qmax), for diagnosis of infravesical obstruction. Methods: we reviewed urodynamic studies performed in men > 40 years. Obstruction was considered a grade 3-6 in the Schäfer nomogram. Sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and the receiver operator characteristic (ROC) curve were calculated for the different components of free uroflowmetry. Results: we analyzed 432 studies. Patients with obstruction had lower values of Qmax and Qave, and higher values of Vtime and TQmax. Considering different thresholds, Qmax had sensitivity, specificity, LR + and LR- values of 12-83%, 50-97%, 1.7-4.46 and 0.32-0.9, respectively; Qave had sensitivity, specificity, LR + and LR- values of 65-95%, 21-66%, 1.22-1.94 and 0.19-0.53, respectively; Vtime had sensitivity, specificity, LR + and LR- values of 49-85%, 26-67%, 1.15-1.54, and 0.57-0.74, respectively; TQmax had a sensitivity, specificity, LR + and LR- of 36-81%, 22-72%, 1.04-1.33 and 0.85-0.87, respectively. The areas under the ROC curves for Qmax, Qave, Vtime and TQmax were 0.75 (95% CI = 0.71-0.79, p < 0.001), 0.71 (95% CI = 0.66-0.75, p < 0.001), 0.62 (95% CI = 0.57-0.67, p < 0.001) and 0.55 (95% CI = 0.5-0.6, p = 0.03), respectively. Conclusions: Qave, Vtime, and TQmax showed a statistically significant discriminatory capacity to predict infravesical obstruction, and therefore they have clinical value as a complement to the information provided by Qmax.


Objetivo: evaluar las estadísticas de desempeño del flujo promedio (Qave), el tiempo de evacuación (Vtime) y el tiempo hasta el flujo máximo (TQmax), además del flujo máximo (Qmax), para el diagnóstico de obstrucción infravesical. Métodos: revisamos urodinamias realizadas en hombres > 40 años. La obstrucción se consideró un grado 3-6 en el nomograma de Schäfer. Se calcularon la sensibilidad, la especificidad, la razón de verosimilitud positiva (LR +), la razón de verosimilitud negativa (LR-) y la curva característica operativa del receptor (ROC) para los diferentes componentes de la flujometría libre. Resultados: analizamos 443 estudios. Los pacientes con obstrucción tenían valores más bajos de Qmax y Qave, y valores más altos de Vtime y TQmax. Considerando diferentes umbrales, el Qmax tuvo valores de sensibilidad, especificidad, LR + y LR- de 12-83%, 50-97%, 1.7-4.46 y 0.32-0.9, respectivamente; Qave tuvo valores de sensibilidad, especificidad, LR + y LR- de 65-95%, 21-66%, 1.22-1.94 y 0.19-0.53, respectivamente; Vtime tuvo valores de sensibilidad, especificidad, LR + y LR- de 49-85%, 26-67%, 1.15-1.54 y 0.57-0.74, respectivamente; TQmax tuvo una sensibilidad, especificidad, LR + y LR- de 36-81%, 22-72%, 1.04-1.33 y 0.85-0.87, respectivamente. Las áreas bajo las curvas ROC para Qmax, Qave, Vtime y TQmax fueron 0,75 (95% CI = 0.71-0.79, p < 0,001), 0.71 (95% CI = 0.66-0.75, p < 0,001), 0.62 (95% CI = 0.57-0.67, p < 0,001) y 0.55 (95% CI = 0.5-0.6, p = 0.03), respectivamente. Conclusiones: Qave, Vtime y TQmax mostraron una capacidad discriminatoria estadísticamente significativa para predecir la obstrucción infravesical, por lo que tienen valor clínico como complemento de la información proporcionada por el Qmax.


Assuntos
Humanos , Masculino , Adulto , Transtornos Urinários/diagnóstico
6.
Mol Metab ; 64: 101573, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970448

RESUMO

BACKGROUND: Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW: In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS: Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.


Assuntos
Obesidade , Aumento de Peso , Animais , Peso Corporal , Ingestão de Energia , Metabolismo Energético/fisiologia , Humanos , Obesidade/metabolismo , Aumento de Peso/fisiologia
7.
Cardiovasc Res ; 118(16): 3198-3210, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35388887

RESUMO

AIMS: Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid ß-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model. METHODS AND RESULTS: We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. CONCLUSIONS: Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid ß-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.


Assuntos
Ácidos Graxos , Mitocôndrias , Camundongos , Animais , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Camundongos Knockout , Aminoácidos/metabolismo , RNA de Transferência/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo
8.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34237158

RESUMO

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos , Mitocôndrias/metabolismo , Proteína 1 de Interação com Receptor Nuclear
9.
Kidney360 ; 2(9): 1441-1454, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34651140

RESUMO

BACKGROUND: Proximal tubular (PT) cells are enriched in mitochondria and peroxisomes. Whereas mitochondrial fatty acid oxidation (FAO) plays an important role in kidney function by supporting the high-energy requirements of PT cells, the role of peroxisomal metabolism remains largely unknown. EHHADH, also known as L-bifunctional protein, catalyzes the second and third step of peroxisomal FAO. METHODS: We studied kidneys of WT and Ehhadh KO mice on a C57BL/6N background using histology, immunohistochemistry, immunofluorescence, immunoblot, RNA-sequencing, and metabolomics. To assess the role of androgens in the kidney phenotype of Ehhadh KO mice, mice underwent orchiectomy. RESULTS: We observed male-specific kidney hypertrophy and glomerular filtration rate reduction in adult Ehhadh KO mice. Transcriptome analysis unveiled a gene expression signature similar to PT injury in acute kidney injury mouse models. This was further illustrated by the presence of KIM-1 (kidney injury molecule-1), SOX-9, and Ki67-positive cells in the PT of male Ehhadh KO kidneys. Male Ehhadh KO kidneys had metabolite changes consistent with peroxisomal dysfunction as well as an elevation in glycosphingolipid levels. Orchiectomy of Ehhadh KO mice decreased the number of KIM-1 positive cells to WT levels. We revealed a pronounced sexual dimorphism in the expression of peroxisomal FAO proteins in mouse kidney, underlining a role of androgens in the kidney phenotype of Ehhadh KO mice. CONCLUSIONS: Our data highlight the importance of EHHADH and peroxisomal metabolism in male kidney physiology and reveal peroxisomal FAO as a sexual dimorphic metabolic pathway in mouse kidneys.


Assuntos
Rim , Peroxissomos , Animais , Hipertrofia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxissomos/metabolismo
10.
J Inherit Metab Dis ; 44(6): 1419-1433, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564857

RESUMO

Peroxisomes metabolize a specific subset of fatty acids, which include dicarboxylic fatty acids (DCAs) generated by ω-oxidation. Data obtained in vitro suggest that the peroxisomal transporter ABCD3 (also known as PMP70) mediates the transport of DCAs into the peroxisome, but in vivo evidence to support this role is lacking. In this work, we studied an Abcd3 KO mouse model generated by CRISPR-Cas9 technology using targeted and untargeted metabolomics, histology, immunoblotting, and stable isotope tracing technology. We show that ABCD3 functions in hepatic DCA metabolism and uncover a novel role for this peroxisomal transporter in lipid homeostasis. The Abcd3 KO mouse presents with increased hepatic long-chain DCAs, increased urine medium-chain DCAs, lipodystrophy, enhanced hepatic cholesterol synthesis and decreased hepatic de novo lipogenesis. Moreover, our study suggests that DCAs are metabolized by mitochondrial fatty acid ß-oxidation when ABCD3 is not functional, reflecting the importance of the metabolic compartmentalization and communication between peroxisomes and mitochondria. In summary, this study provides data on the role of the peroxisomal transporter ABCD3 in hepatic lipid homeostasis and DCA metabolism, and the consequences of peroxisomal dysfunction for the liver.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Peroxissomos/metabolismo
11.
Cell Mol Life Sci ; 78(14): 5631-5646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34110423

RESUMO

Peroxisomes play an essential role in the ß-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA ß-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA ß-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA ß-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA ß-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA ß-oxidation is a regulator of hepatic cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Ácidos Dicarboxílicos/urina , Erros Inatos do Metabolismo Lipídico/patologia , Hepatopatias/patologia , Mitocôndrias/patologia , Enzima Bifuncional do Peroxissomo/fisiologia , Animais , Feminino , Células HEK293 , Homeostase , Humanos , Erros Inatos do Metabolismo Lipídico/etiologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
12.
Mol Genet Metab Rep ; 27: 100749, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868931

RESUMO

Patients with a disorder of mitochondrial long-chain fatty acid ß-oxidation (FAO) have reduced fasting tolerance and may present with hypoketotic hypoglycemia, hepatomegaly, (cardio)myopathy and rhabdomyolysis. Patients should avoid a catabolic state because it increases reliance on FAO as energy source. It is currently unclear whether weight loss through a reduction of caloric intake is safe in patients with a FAO disorder. We used the long-chain acyl-CoA dehydrogenase knockout (LCAD KO) mouse model to study the impact of dietary restriction (DR) on the plasma metabolite profile and cardiac function. For this, LCAD KO and wild type (WT) mice were subjected to DR (70% of ad libitum chow intake) for 4 weeks and compared to ad libitum chow fed mice. We found that DR had a relatively small impact on the plasma metabolite profile of WT and LCAD KO mice. Echocardiography revealed a small decrease in left ventricular systolic function of LCAD KO mice, which was most noticeable after DR, but there was no evidence of DR-induced cardiac remodeling. Our results suggest that weight loss through DR does not have acute and detrimental consequences in a mouse model for FAO disorders.

13.
Andrologia ; 53(4): e13933, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33586806

RESUMO

We investigated the association between varicocele and benign prostatic hyperplasia in men over the age of 40 years. A total of 296 outpatients were evaluated. Prostate volume was measured with transrectal ultrasound. Varicocele was diagnosed by physical examination and ultrasound. Prostatic hyperplasia was defined as prostate volume greater than or equal to 40 ml. Two groups were compared: patients with prostate volume less than 40 ml and patients with prostate volume greater than or equal to 40 ml. There was a statistically significant difference between the groups in terms of mean age, post-void residual, International Prostate Symptom Score and PSA. The percentage of patients with clinical varicocele in the group with a volume less than 40 ml and the group with a volume equal to or greater than 40 ml was 38.2% and 47.7% respectively (p = .12). There were no differences between the two groups in the percentage of patients with clinical or subclinical varicocele (43.2% vs. 52.2%, respectively, p = .12). No differences were found in the percentage of patients with varicocele when comparing men with prostates smaller than 40 ml and greater than or equal to 40 ml.


Assuntos
Hiperplasia Prostática , Varicocele , Adulto , Humanos , Masculino , Estudos Prospectivos , Hiperplasia Prostática/complicações , Hiperplasia Prostática/diagnóstico por imagem , Hiperplasia Prostática/epidemiologia , Ultrassonografia , Varicocele/diagnóstico por imagem , Varicocele/epidemiologia
14.
Rev. peru. ginecol. obstet. (En línea) ; 66(4): 00016, oct-dic 2020. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1252060

RESUMO

RESUMEN El tumor carcinoide primario de ovario es una entidad poco frecuente que se caracteriza por la producción de sustancias vasoactivas que pasan directamente al torrente circulatorio y producen el llamado síndrome carcinoide. Estas sustancias también son las causantes de la formación de placas de fibrosis en las válvulas cardiacas, principalmente las derechas. Presentamos un caso de tumor carcinoide primario de ovario con afectación de la válvula tricúspide, que fue diagnosticado a partir de la lesión cardiaca. En la literatura están descritos casos clínicos aislados y revisiones de casos que nos pueden ayudar en el diagnóstico y en la toma de decisiones terapéuticas. Debemos conocer la existencia de estos tumores; la clínica debe alertarnos sobre su presencia. Es primordial un manejo multidisciplinar junto con endocrinólogos, cardiólogos, oncólogos, anatomo-patólogos, anestesistas, ginecólogos y cirujanos cardiacos, para ofrecer un tratamiento completo.


ABSTRACT Primary ovarian carcinoid tumor is a rare neoplasm characterized by the production of vasoactive substances that enter the bloodstream and give rise to the so-called carcinoid syndrome. These substances may also cause fibrotic plaques in the heart valves, mainly those in the right cardiac chambers. We describe the case of a primary ovarian carcinoid tumor with tricuspid valve involvement in which the diagnosis was prompted by identification of cardiac involvement. Knowledge of the clinical manifestations of neuroendocrine tumors is important in diagnosis and patient management. Recognition of typical clinical features may help suggest the correct diagnosis. Multidisciplinary discussion allows the formulation of a comprehensive management strategy involving endocrinologists, cardiologists, oncologists, pathologists, anaesthesiologists, gynaecologists and heart surgeons.

15.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165720, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057943

RESUMO

Carnitine plays an essential role in mitochondrial fatty acid ß-oxidation as a part of a cycle that transfers long-chain fatty acids across the mitochondrial membrane and involves two carnitine palmitoyltransferases (CPT1 and CPT2). Two distinct carnitine acyltransferases, carnitine octanoyltransferase (COT) and carnitine acetyltransferase (CAT), are peroxisomal enzymes, which indicates that carnitine is not only important for mitochondrial, but also for peroxisomal metabolism. It has been demonstrated that after peroxisomal metabolism, specific intermediates can be exported as acylcarnitines for subsequent and final mitochondrial metabolism. There is also evidence that peroxisomes are able to degrade fatty acids that are typically handled by mitochondria possibly after transport as acylcarnitines. Here we review the biochemistry and physiological functions of metabolite exchange between peroxisomes and mitochondria with a special focus on acylcarnitines.


Assuntos
Carnitina Aciltransferases/metabolismo , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Carnitina/metabolismo
16.
J Inherit Metab Dis ; 43(3): 486-495, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31845336

RESUMO

Secondary carnitine deficiency is commonly observed in inherited metabolic diseases characterised by the accumulation of acylcarnitines such as mitochondrial fatty acid oxidation (FAO) disorders. It is currently unclear if carnitine deficiency and/or acylcarnitine accumulation play a role in the pathophysiology of FAO disorders. The long-chain acyl-CoA dehydrogenase (LCAD) KO mouse is a model for long-chain FAO disorders and is characterised by decreased levels of tissue and plasma free carnitine. Tissue levels of carnitine are controlled by SLC22A5, the plasmalemmal carnitine transporter. Here, we have further decreased carnitine availability in the LCAD KO mouse through a genetic intervention by introducing one defective Slc22a5 allele (jvs). Slc22a5 haploinsufficiency decreased free carnitine levels in liver, kidney, and heart of LCAD KO animals. The resulting decrease in the tissue long-chain acylcarnitines levels had a similar magnitude as the decrease in free carnitine. Levels of cardiac deoxycarnitine, a carnitine biosynthesis intermediate, were elevated due to Slc22a5 haploinsufficiency in LCAD KO mice. A similar increase in heart and muscle deoxycarnitine was observed in an independent experiment using Slc22a5jvs/jvs mice. Cardiac hypertrophy, fasting-induced hypoglycemia and increased liver weight, the major phenotypes of the LCAD KO mouse, were not affected by Slc22a5 haploinsufficiency. This may suggest that secondary carnitine deficiency does not play a major role in the pathophysiology of these phenotypes. Similarly, our data do not support a major role for toxicity of long-chain acylcarnitines in the phenotype of the LCAD KO mouse.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Carnitina/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Miocárdio/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Cardiomiopatias , Carnitina/deficiência , Carnitina/farmacologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Haploinsuficiência , Hiperamonemia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Doenças Musculares , Fenótipo , Membro 5 da Família 22 de Carreadores de Soluto/genética
17.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29997171

RESUMO

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model (Abcd1 null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin. Here, we identify an impaired NRF2 response caused by aberrant activity of GSK-3ß. We find that GSK-3ß inhibitors can significantly reactivate the blunted NRF2 response in patients' fibroblasts. In the mouse models (Abcd1- and Abcd1-/Abcd2-/- mice), oral administration of dimethyl fumarate (DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclerosis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure, (iii) oxidative damage, and (iv) inflammation, highlighting an intricate cross-talk governing energetic and redox homeostasis in X-ALD Importantly, DMF halted axonal degeneration and locomotor disability suggesting that therapies activating NRF2 hold therapeutic potential for X-ALD and other axonopathies with impaired GSK-3ß/NRF2 axis.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Antioxidantes/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Fumarato de Dimetilo/administração & dosagem , Modelos Animais de Doenças , Gliose/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Knockout , Biogênese de Organelas , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Brain Pathol ; 28(5): 611-630, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29027761

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP-tg66/66 ) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient-derived fibroblasts and spinal cords of the PLP-tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N-acetyl-cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP-tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.


Assuntos
Dinâmica Mitocondrial , Estresse Oxidativo , Doença de Pelizaeus-Merzbacher/metabolismo , Animais , Células Cultivadas , Criança , Pré-Escolar , DNA Mitocondrial , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Glutâmico/metabolismo , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...