Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 189, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684364

RESUMO

Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.

2.
J Biol Chem ; 299(11): 105278, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742917

RESUMO

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Assuntos
Região Variável de Imunoglobulina , Humanos , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Domínios Proteicos/genética , Escherichia coli/genética , Dobramento de Proteína
3.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612423

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

4.
Appl Microbiol Biotechnol ; 107(14): 4567-4580, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37284893

RESUMO

Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.


Assuntos
Acinetobacter baumannii , Camelídeos Americanos , Animais , Acinetobacter baumannii/metabolismo , Membrana Celular/metabolismo , Antibacterianos/metabolismo , Proteínas de Membrana/metabolismo
5.
Cell Host Microbe ; 31(7): 1216-1231.e6, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37329881

RESUMO

Glycosylation of eukaryotic virus particles is common and influences their uptake, trafficking, and immune recognition. In contrast, glycosylation of bacteriophage particles has not been reported; phage virions typically do not enter the cytoplasm upon infection, and they do not generally inhabit eukaryotic systems. We show here that several genomically distinct phages of Mycobacteria are modified with glycans attached to the C terminus of capsid and tail tube protein subunits. These O-linked glycans influence antibody production and recognition, shielding viral particles from antibody binding and reducing production of neutralizing antibodies. Glycosylation is mediated by phage-encoded glycosyltransferases, and genomic analysis suggests that they are relatively common among mycobacteriophages. Putative glycosyltransferases are also encoded by some Gordonia and Streptomyces phages, but there is little evidence of glycosylation among the broader phage population. The immune response to glycosylated phage virions in mice suggests that glycosylation may be an advantageous property for phage therapy of Mycobacterium infections.


Assuntos
Bacteriófagos , Micobacteriófagos , Animais , Camundongos , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Glicosilação , Bacteriófagos/genética , Vírion/genética , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo
6.
Glycobiology ; 33(6): 512-524, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943318

RESUMO

The Actinobacterial species Cellulomonas fimi ATCC484 has long been known to secrete mannose-containing proteins, but a closer examination of glycoproteins associated with the cell has never been reported. Using ConA lectin chromatography and mass spectrometry, we have surveyed the cell-associated glycoproteome from C. fimi and collected detailed information on the glycosylation sites of 19 cell-associated glycoproteins. In addition, we have expressed a previously known C. fimi secreted cellulase, Celf_3184 (formerly CenA), a putative peptide prolyl-isomerase, Celf_2022, and a penicillin-binding protein, Celf_0189, in the mannosylation capable host, Corynebacterium glutamicum. We found that the glycosylation machinery in C. glutamicum was able to use the recombinant C. fimi proteins as substrates and that the glycosylation matched closely that found in the native proteins when expressed in C. fimi. We are pursuing this observation as a prelude to dissecting the biosynthetic machinery and biological consequences of this protein mannosylation.


Assuntos
Actinobacteria , Actinobacteria/genética , Glicosilação , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Manose/metabolismo
7.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987713

RESUMO

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticorpos Monoclonais , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades Antigênicas/genética
8.
MAbs ; 15(1): 2149057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36447399

RESUMO

Effective processes for synthesizing antibody-drug conjugates (ADCs) require: 1) site-specific incorporation of the payload to avoid interference with binding to the target epitope, 2) optimal drug/antibody ratio to achieve sufficient potency while avoiding aggregation or solubility problems, and 3) a homogeneous product to facilitate approval by regulatory agencies. In conventional ADCs, the drug molecules are chemically attached randomly to antibody surface residues (typically Lys or Cys), which can interfere with epitope binding and targeting, and lead to overall product heterogeneity, long-term colloidal instability and unfavorable pharmacokinetics. Here, we present a more controlled process for generating ADCs where drug is specifically conjugated to only Fab N-linked glycans in a narrow ratio range through functionalized sialic acids. Using a bacterial sialytransferase, we incorporated N-azidoacetylneuraminic acid (Neu5NAz) into the Fab glycan of cetuximab. Since only about 20% of human IgG1 have a Fab glycan, we extended the application of this approach by using molecular modeling to introduce N-glycosylation sites in the Fab constant region of other therapeutic monoclonal antibodies. We used trastuzumab as a model for the incorporation of Neu5NAz in the novel Fab glycans that we designed. ADCs were generated by clicking the incorporated Neu5NAz with monomethyl auristatin E (MMAE) attached to a self-immolative linker terminated with dibenzocyclooctyne (DBCO). Through this process, we obtained cetuximab-MMAE and trastuzumab-MMAE with drug/antibody ratios in the range of 1.3 to 2.5. We confirmed that these ADCs still bind their targets efficiently and are as potent in cytotoxicity assays as control ADCs obtained by standard conjugation protocols. The site-directed conjugation to Fab glycans has the additional benefit of avoiding potential interference with effector functions that depend on Fc glycan structure.


Assuntos
Imunoconjugados , Polissacarídeos , Humanos , Cetuximab , Epitopos , Trastuzumab , Anticorpos Monoclonais
9.
Biotechnol Bioeng ; 119(9): 2331-2344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35508753

RESUMO

Alpha-1-antitrypsin (A1AT) is a serine protease inhibitor which blocks the activity of serum proteases including neutrophil elastase to protect the lungs. Its deficiency is known to increase the risk of pulmonary emphysema as well as chronic obstructive pulmonary disease. Currently, the only treatment for patients with A1AT deficiency is weekly injection of plasma-purified A1AT. There is still today no commercial source of therapeutic recombinant A1AT, likely due to significant differences in expression host-specific glycosylation profile and/or high costs associated with the huge therapeutic dose needed. Accordingly, we aimed to produce high levels of recombinant wild-type A1AT, as well as a mutated protein (mutein) version for increased oxidation resistance, with N-glycans analogous to human plasma-derived A1AT. To achieve this, we disrupted two endogenous glycosyltransferase genes controlling core α-1,6-fucosylation (Fut8) and α-2,3-sialylation (ST3Gal4) in CHO cells using CRISPR/Cas9 technology, followed by overexpression of human α-2,6-sialyltransferase (ST6Gal1) using a cumate-inducible expression system. Volumetric A1AT productivity obtained from stable CHO pools was 2.5- to 6.5-fold higher with the cumate-inducible CR5 promoter compared to five strong constitutive promoters. Using the CR5 promoter, glycoengineered stable CHO pools were able to produce over 2.1 and 2.8 g/L of wild-type and mutein forms of A1AT, respectively, with N-glycans analogous to the plasma-derived clinical product Prolastin-C. Supplementation of N-acetylmannosamine to the cell culture media during production increased the overall sialylation of A1AT as well as the proportion of bi-antennary and disialylated A2G2S2 N-glycans. These purified recombinant A1AT proteins showed in vitro inhibitory activity equivalent to Prolastin-C and substitution of methionine residues 351 and 358 with valines rendered A1AT significantly more resistant to oxidation. The recombinant A1AT mutein bearing an improved oxidation resistance described in this study could represent a viable biobetter drug, offering a safe and more stable alternative for augmentation therapy.


Assuntos
Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Polissacarídeos , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacologia , Deficiência de alfa 1-Antitripsina/tratamento farmacológico
10.
Glycobiology ; 32(7): 629-644, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481895

RESUMO

The glycosylation of structural proteins is a widespread posttranslational modification in Archaea. Although only a handful of archaeal N-glycan structures have been determined to date, it is evident that the diversity of structures expressed is greater than in the other domains of life. Here, we report on our investigation of the N- and O-glycan modifications expressed by Methanoculleus marisnigri, a mesophilic methanogen from the Order Methanomicrobiales. Unusually, mass spectrometry (MS) analysis of purified archaella revealed no evidence for N- or O-glycosylation of the constituent archaellins, In contrast, the S-layer protein, identified as a PGF-CTERM sorting domain-containing protein encoded by MEMAR_RS02690, is both N- and O-glycosylated. Two N-glycans were identified by NMR and MS analysis: a trisaccharide α-GlcNAc-4-ß-GlcNAc3NGaAN-4-ß-Glc-Asn where the second residue is 2-N-acetyl, 3-N-glyceryl-glucosamide and a disaccharide ß-GlcNAc3NAcAN-4-ß-Glc-Asn, where the terminal residue is 2,3 di-N-acetyl-glucosamide. The same trisaccharide was also found N-linked to a type IV pilin. The S-layer protein is also extensively modified in the threonine-rich region near the C-terminus with O-glycans composed exclusively of hexoses. While the S-layer protein has a predicted PGF-CTERM processing site, no evidence of a truncated and lipidated C-terminus, the expected product of processing by an archaeosortase, was found. Finally, NMR also identified a polysaccharide expressed by M. marisnigri and composed of a repeating tetrasaccharide unit of [-2-ß-Ribf-3-α-Rha2OMe-3-α-Rha - 2-α-Rha-]. This is the first report of N- and O-glycosylation in an archaeon from the Order Methanomicrobiales.


Assuntos
Glicoproteínas de Membrana , Methanomicrobiaceae , Glicoproteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Polissacarídeos/química , Trissacarídeos
11.
MAbs ; 13(1): 1997072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812124

RESUMO

Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Anticorpos Monoclonais/química , Domínio Catalítico , Deutério/química , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos/métodos , Humanos
12.
J Biol Chem ; 295(43): 14618-14629, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32817340

RESUMO

Motility in archaea is facilitated by a unique structure termed the archaellum. N-Glycosylation of the major structural proteins (archaellins) is important for their subsequent incorporation into the archaellum filament. The identity of some of these N-glycans has been determined, but archaea exhibit extensive variation in their glycans, meaning that further investigations can shed light not only on the specific details of archaellin structure and function, but also on archaeal glycobiology in general. Here we describe the structural characterization of the N-linked glycan modifications on the archaellins and S-layer protein of Methanothermococcus thermolithotrophicus, a methanogen that grows optimally at 65 °C. SDS-PAGE and MS analysis revealed that the sheared archaella are composed principally of two of the four predicted archaellins, FlaB1 and FlaB3, which are modified with a branched, heptameric glycan at all N-linked sequons except for the site closest to the N termini of both proteins. NMR analysis of the purified glycan determined the structure to be α-d-glycero-d-manno-Hep3OMe6OMe-(1-3)-[α-GalNAcA3OMe-(1-2)-]-ß-Man-(1-4)-[ß-GalA3OMe4OAc6CMe-(1-4)-α-GalA-(1-2)-]-α-GalAN-(1-3)-ß-GalNAc-Asn. A detailed investigation by hydrophilic interaction liquid ion chromatography-MS discovered the presence of several, less abundant glycan variants, related to but distinct from the main heptameric glycan. In addition, we confirmed that the S-layer protein is modified with the same heptameric glycan, suggesting a common N-glycosylation pathway. The M. thermolithotrophicus archaellin N-linked glycan is larger and more complex than those previously identified on the archaellins of related mesophilic methanogens, Methanococcus voltae and Methanococcus maripaludis This could indicate that the nature of the glycan modification may have a role to play in maintaining stability at elevated temperatures.


Assuntos
Proteínas Arqueais/química , Methanococcaceae/química , Polissacarídeos/análise , Sequência de Aminoácidos , Sequência de Carboidratos , Glicosilação , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular
13.
MAbs ; 11(4): 757-766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894096

RESUMO

The detection of free sulfhydryls in proteins can reveal incomplete disulfide bond formation, indicate cysteine residues available for conjugation, and offer insights into protein stability and structure. Traditional spectroscopic methods of free sulfhydryl detection, such as Ellman's reagent, generally require a relatively large amount of sample, preventing their use for the analysis of biotherapeutics early in the development cycle. These spectroscopic methods also cannot accurately determine the location of the free sulfhydryl, further limiting their utility. Mass spectrometry was used to detect free sulfhydryl residues in intact proteins after labeling with Maleimide-PEG2-Biotin. As little as 2% cysteine residues with free sulfhydryls (0.02 mol SH per mol protein) could be detected by this method. Following reduction, the free sulfhydryl abundance on antibody heavy and light chains could be measured. To determine free sulfhydryl location at peptide-level resolution, free sulfhydryls and cysteines involved in disulfide bonds were differentially labeled with N-ethylmaleimide and d5-N-ethylmaleimide, respectively. Following enzymatic digestion and nanoLC-MS, the abundance of free sulfhydryls at individual cysteine residues was quantified down to 2%. The method was optimized to avoid non-specific labeling, disulfide bond scrambling, and maleimide exchange and hydrolysis. This new workflow for free sulfhydryl analysis was used to measure the abundance and location of free sulfhydryls in 3 commercially available monoclonal antibody standards (NIST Monoclonal Antibody Reference Material (NIST), SILu™Lite SigmaMAb Universal Antibody Standard (Sigma-Aldrich) and Intact mAb Mass Check Standard (Waters)) and 1 small protein standard (ß-Lactoglobulin A).


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Compostos de Sulfidrila/análise , Cisteína/química , Etilmaleimida , Humanos , Lactoglobulinas/química , Maleimidas/química
14.
Biotechnol Prog ; 34(2): 494-504, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314777

RESUMO

Lactate and ammonia accumulation is a major factor limiting the performance of fed-batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by-products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine-free fed-batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2-overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed-batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine-free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5-fold increase in IFNα2b titer in comparison to the control glutamine-supplied fed-batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC-MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high-quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:494-504, 2018.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Glicoproteínas/biossíntese , Proteínas Recombinantes/genética , Amônia/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Glucose/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Proteínas Recombinantes/química
15.
J Biotechnol ; 242: 73-82, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27940295

RESUMO

The accumulation of metabolic by-products remains a critical challenge in the development of mammalian cells culture processes as it impacts cellular growth, productivity and product quality. Although the overexpression of the PYC2 gene was shown to significantly improve the nutrient metabolism efficiency of mammalian cells, its impact on recombinant protein quality has not been investigated yet. In this study, we assess the effect of this metabolic engineering strategy on the quality of a recombinant therapeutic glycoprotein, the human interferon α2b (IFNα2b). As inferred from densitometry analysis of SDS-PAGE gels, PYC2-overexpressing cells sustained a higher percentage of intact glycosylated IFNα2b at the late stage of batch cultures, which was correlated with prolonged viability and reduced accumulation of waste metabolites. Contrarily to the IFNα2b produced by the PYC2 cells, LC-MS analysis confirmed the presence of less glycosylated IFNα2b as well as the occurrence of proteolytic cleavage in the IFNα2b produced in the parental cells. Taken together, these results indicate that PYC2-overexpression in mammalian cells leads to extended favorable conditions for glycosylation and offer an attractive approach to mass-produce high-quality recombinant proteins.


Assuntos
Carbono/metabolismo , Glicoproteínas/metabolismo , Células HEK293/metabolismo , Proteínas Recombinantes/metabolismo , Amônia/metabolismo , Reatores Biológicos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Glucose/metabolismo , Glutamina/metabolismo , Glicoproteínas/genética , Glicosilação , Humanos , Interferon alfa-2 , Interferon-alfa/química , Interferon-alfa/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Leveduras/genética
16.
Mol Microbiol ; 103(1): 67-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696564

RESUMO

While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2-methoxy-4,5,6-trihydroxy-hexanoyl residue in which the Non has a pseudaminic acid configuration (L-glycero-L-manno) and is ß-linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O-linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll-like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.


Assuntos
Polissacarídeos/química , Polissacarídeos/metabolismo , Treponema denticola/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelina/metabolismo , Glicosilação , Relação Estrutura-Atividade , Treponema denticola/genética
17.
PLoS One ; 11(3): e0151186, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950732

RESUMO

The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes). Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC), as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization.


Assuntos
Cellulomonas/metabolismo , Proteômica , Carboximetilcelulose Sódica/metabolismo , Cellulomonas/enzimologia , Especificidade da Espécie , Xilanos/metabolismo
18.
Glycoconj J ; 32(9): 729-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26452603

RESUMO

Legionaminic acids are analogs of sialic acid that occur in several bacteria. The most commonly occurring form is Leg5Ac7Ac, which differs from Neu5Ac only at the C7 (acetamido) and C9 (deoxy) positions. While these differences greatly reduce the susceptibility of Leg compounds to sialidases, several sialyltransferases have been identified that can use CMP-Leg5Ac7Ac as a donor (Watson et al. 2011). We report the successful modification with Leg5Ac7Ac of a glycolipid, GM1a, and two glycoproteins, interferon-α2b and α1-antitrypsin, by means of two mammalian sialyltransferases, namely porcine ST3Gal1 and human ST6Gal1. The Leg5Ac7Ac form of GD1a was not recognized by the myelin-associated glycoprotein (MAG, Siglec-4), confirming the importance of the glycerol moiety in the interaction of sialo-glycans with Siglecs.


Assuntos
Ácidos Siálicos/química , Sialiltransferases/química , Animais , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Humanos , Interferon-alfa/química , Interferon-alfa/metabolismo , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/metabolismo , Ligação Proteica , Sialiltransferases/metabolismo , Suínos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
19.
MAbs ; 7(3): 571-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875452

RESUMO

The presence of α2,6-sialic acids on the Fc N-glycan provides anti-inflammatory properties to the IgGs through a mechanism that remains unclear. Fc-sialylated IgGs are rare in humans as well as in industrial host cell lines such as Chinese hamster ovary (CHO) cells. Facilitated access to well-characterized α2,6-sialylated IgGs would help elucidate the mechanism of this intriguing IgG's effector function. This study presents a method for the efficient Fc glycan α2,6-sialylation of a wild-type and a F243A IgG1 mutant by transient co-expression with the human α2,6-sialyltransferase 1 (ST6) and ß1,4-galactosyltransferase 1 (GT) in CHO cells. Overexpression of ST6 alone only had a moderate effect on the glycoprofiles, whereas GT alone greatly enhanced Fc-galactosylation, but not sialylation. Overexpression of both GT and ST6 was necessary to obtain a glycoprofile dominated by α2,6-sialylated glycans in both antibodies. The wild-type was composed of the G2FS(6)1 glycan (38%) with remaining unsialylated glycans, while the mutant glycoprofile was essentially composed of G2FS(6)1 (25%), G2FS(3,6)2 (16%) and G2FS(6,6)2 (37%). The α2,6-linked sialic acids represented over 85% of all sialic acids in both antibodies. We discuss how the limited sialylation level in the wild-type IgG1 expressed alone or with GT results from the glycan interaction with Fc's amino acid residues or from intrinsic galactosyl- and sialyl-transferases substrate specificities.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Mutação de Sentido Incorreto , Ácidos Siálicos/metabolismo , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Antígenos CD/biossíntese , Antígenos CD/genética , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , N-Acetil-Lactosamina Sintase/biossíntese , N-Acetil-Lactosamina Sintase/genética , Sialiltransferases/biossíntese , Sialiltransferases/genética
20.
J Bacteriol ; 197(9): 1668-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733616

RESUMO

UNLABELLED: Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-ß-ManNAc3NAmA6Thr-1,4-ß-GlcNAc3NAcA-1,3-ß-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE: This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.


Assuntos
Proteínas de Fímbrias/metabolismo , Glicoproteínas/metabolismo , Mathanococcus/metabolismo , Oligossacarídeos/biossíntese , Pseudomonas aeruginosa/metabolismo , Vias Biossintéticas/genética , Western Blotting , Análise Mutacional de DNA , Deleção de Genes , Teste de Complementação Genética , Glicosilação , Espectrometria de Massas , Mathanococcus/genética , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...