Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172531, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636873

RESUMO

The lack of extreme water level fluctuations in managed, non-peat forming wetland ecosystems can result in decreased productivity through the loss of heterogeneity of these ecosystems. Stochastic disruption, such as a water level drawdown, can effectively reverse this effect and return the wetland to a more productive state, associated with higher biodiversity through new vegetation development. Yet, aside from the effect on vegetation dynamics, little is known about longer-term effects (30 years) of a water level drawdown, hereafter referred to as legacy effects, and how this may impact future water level drawdowns. Here, we aim to unravel the legacy effects of a water level drawdown, stand alone and along a water level gradient, on seed bank properties and nutrient availability in a eutrophic clay wetland. To identify these, we studied the hydrologically managed nature reserve Oostvaardersplassen in the Netherlands. Here, one section was subjected to a multi-year water level drawdown and another section was kept inundated. We determined seed bank properties in both areas, spatially and along a soil elevation gradient (20 cm). Nutrient availability was measured by taking sediment samples along the water level gradient and through experimental manipulation of the water level in an indoor mesocosm experiment. Germination was higher in locations with a water level drawdown history, especially at relatively high elevations. Additionally, the proportion of pioneer species in the seed bank was higher in the water level drawdown area. Overall, nutrient concentrations were higher compared to other aquatic systems. Nutrient availability was higher in the inundated area and did not respond to the water level gradient. We conclude that 30 years after an induced water level drawdown there is no depletion of nutrients, while we still observe a legacy effect in the number of viable seeds in the seed bank.

2.
Proc Biol Sci ; 291(2014): 20232622, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196366

RESUMO

Terrestrial wetland ecosystems challenge biodiversity-ecosystem function theory, which generally links high species diversity to stable ecosystem functions. An open question in ecosystem ecology is whether assemblages of co-occurring peat mosses contribute to the stability of peatland ecosystem processes. We conducted a two-species (Sphagnum cuspidatum, Sphagnum medium) replacement series mesocosm experiment to evaluate the resistance, resilience, and recovery rates of net ecosystem CO2 exchange (NEE) under mild and deep water table drawdown. Our results show a positive effect of mild water table drawdown on NEE with no apparent role for peat moss mixture. Our study indicates that the carbon uptake capacity by peat moss mixtures is rather resilient to mild water table drawdown, but seriously affected by deeper drought conditions. Co-occurring peat moss species seem to enhance the resilience of the carbon uptake function (i.e. ability of NEE to return to pre-perturbation levels) of peat moss mixtures only slightly. These findings suggest that assemblages of co-occurring Sphagnum mosses do only marginally contribute to the stability of ecosystem functions in peatlands under drought conditions. Above all, our results highlight that predicted severe droughts can gravely affect the sink capacity of peatlands, with only a small extenuating role for peat moss mixtures.


Assuntos
Ecossistema , Sphagnopsida , Ecologia , Biodiversidade , Carbono
5.
Ambio ; 52(9): 1519-1528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222914

RESUMO

Peatlands are among the world's most carbon-dense ecosystems and hotspots of carbon storage. Although peatland drainage causes strong carbon emissions, land subsidence, fires and biodiversity loss, drainage-based agriculture and forestry on peatland is still expanding on a global scale. To maintain and restore their vital carbon sequestration and storage function and to reach the goals of the Paris Agreement, rewetting and restoration of all drained and degraded peatlands is urgently required. However, socio-economic conditions and hydrological constraints hitherto prevent rewetting and restoration on large scale, which calls for rethinking landscape use. We here argue that creating integrated wetscapes (wet peatland landscapes), including nature preserve cores, buffer zones and paludiculture areas (for wet productive land use), will enable sustainable and complementary land-use functions on the landscape level. As such, transforming landscapes into wetscapes presents an inevitable, novel, ecologically and socio-economically sound alternative for drainage-based peatland use.


Assuntos
Ecossistema , Áreas Alagadas , Agricultura , Biodiversidade , Carbono , Solo
6.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018407

RESUMO

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Assuntos
Magnoliopsida , Humanos , Filogenia , Mudança Climática , Biodiversidade
8.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709320

RESUMO

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Árvores , Conservação dos Recursos Naturais/métodos , Humanos , Filogenia , Árvores/classificação
9.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33199011

RESUMO

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Assuntos
Ecossistema , Incêndios , Carbono , Ciclo do Carbono , Solo , Áreas Alagadas
10.
Front Microbiol ; 10: 2042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555245

RESUMO

Plant specialized metabolites play an important role in soil carbon (C) and nutrient fluxes. Through anti-microbial effects, they can modulate microbial assemblages and associated microbial-driven processes, such as nutrient cycling, so to positively or negatively cascade on plant fitness. As such, plant specialized metabolites can be used as a tool to supplant competitors. These compounds are little studied in bryophytes. This is especially notable in peatlands where Sphagnum mosses can dominate the vegetation and show strong interspecific competition. Sphagnum mosses form carpets where diverse microbial communities live and play a crucial role in Sphagnum fitness by regulating C and nutrient cycling. Here, by means of a microcosm experiment, we assessed to what extent moss metabolites of two Sphagnum species (S. fallax and S. divinum) modulate the competitive Sphagnum microbiome, with particular focus on microbial respiration. Using a reciprocal leachate experiment, we found that interactions between Sphagnum leachates and microbiome are species-specific. We show that both Sphagnum leachates differed in compound richness and compound relative abundance, especially sphagnum acid derivates, and that they include microbial-related metabolites. The addition of S. divinum leachate on the S. fallax microbiome immediately reduced microbial respiration (-95%). Prolonged exposition of S. fallax microbiome to S. divinum leachate destabilized the food web structure due to a modulation of microbial abundance. In particular, leachate addition decreased the biomass of testate amoebae and rotifers but increased that of ciliates. These changes did not influence microbial CO2 respiration, suggesting that the structural plasticity of the food web leads to its functional resistance through the replacement of species that are functionally redundant. In contrast, S. fallax leachate neither affected S. divinum microbial respiration, nor microbial biomass. We, however, found that S. fallax leachate addition stabilized the food web structure associated to S. divinum by changing trophic interactions among species. The differences in allelopathic effects between both Sphagnum leachates might impact their competitiveness and affect species distribution at local scale. Our study further paves the way to better understand the role of moss and microbial specialized metabolites in peatland C dynamics.

11.
Sci Total Environ ; 695: 133867, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31421346

RESUMO

Calcareous spring fens are among the rarest and most endangered wetland types worldwide. The majority of these ecosystems can be found at high latitudes, where they are affected by above average rates of climate change. Particularly winter temperatures are increasing, which results in decreased snow cover. As snow provides an insulating layer that protects ecosystems from subzero temperatures, its decrease is likely to induce stress to plants. To investigate the sensitivity of the bryophyte community - key to the functioning of calcareous spring fens - to changing climatic conditions, we studied the annual variation in ecophysiology of two dominant bryophytes: Campylium stellatum and Scorpidium scorpioides. Further, a snow removal experiment was used to simulate the effect of changing winter conditions. In both species, we observed lowest efficiency of photosystem II (Fv/Fm) in spring, indicating physiological stress, and highest chlorophyll-a, -b and carotenoid concentrations in autumn. Snow removal exacerbated physiological stress in bryophytes. Consequently Fv/Fm, pigment concentrations and chlorophyll to carotenoids ratios declined, while chlorophyll-a to -b ratios increased. Moreover, these effects of winter climate change cascaded to the growing season. C. stellatum, a low hummock inhabitor, suffered more from snow removal (annual mean decline in Fv/Fm 7.7% and 30.0% in chlorophyll-a) than S. scorpioides, a hollow species (declines 5.4% and 14.5%, respectively). Taken together, our results indicate that spring fen bryophytes are negatively impacted by winter climate change, as a result of longer frost periods and increased numbers of freeze-thaw cycles in combination with higher light intensity and dehydration.


Assuntos
Briófitas/fisiologia , Mudança Climática , Estresse Fisiológico/fisiologia , Clorofila/análogos & derivados , Ecossistema , Congelamento , Plantas , Estações do Ano , Neve , Temperatura
12.
Glob Chang Biol ; 24(9): 3911-3921, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29569798

RESUMO

Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb-14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.


Assuntos
Carbono/metabolismo , Mudança Climática , Plantas/metabolismo , Solo/química , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Ecossistema , Desenvolvimento Vegetal , Estações do Ano , Sphagnopsida
13.
Glob Chang Biol ; 24(3): 972-986, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28991408

RESUMO

Ecosystems are increasingly prone to climate extremes, such as drought, with long-lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem's response to droughts, raising the issue of nonlinear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands-a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of -24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the nonlinear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes.


Assuntos
Mudança Climática , Secas , Fungos/fisiologia , Plantas/microbiologia , Áreas Alagadas , Água Subterrânea , Consumo de Oxigênio , Microbiologia do Solo , Simbiose , Água/análise
14.
R Soc Open Sci ; 4(10): 170449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134063

RESUMO

Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO2 exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, Polytrichum spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.

15.
Nat Commun ; 8(1): 1161, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079831

RESUMO

In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change.


Assuntos
Biodiversidade , Ecossistema , Plantas/classificação , Solo , Sphagnopsida/fisiologia , Áreas Alagadas , Carbono , Análise por Conglomerados , Meio Ambiente , Europa (Continente) , Geografia , Modelos Lineares , Análise de Componente Principal
16.
J Eukaryot Microbiol ; 64(6): 729-739, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28231613

RESUMO

Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.


Assuntos
Variação Biológica da População , Determinismo Genético , Lobosea/citologia , Lobosea/genética , Clima , Exposição Ambiental , Microbiologia Ambiental , Lobosea/classificação
18.
Eur J Protistol ; 55(Pt B): 190-202, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27161931

RESUMO

Soil microbial communities significantly contribute to global fluxes of nutrients and carbon. Their response to climate change, including winter warming, is expected to modify these processes through direct effects on microbial functions due to osmotic stress, and changing temperature regimes. Using four European peatlands reflecting different frequencies of frost events, we show that peatland testate amoeba communities diverge among sites with different winter climates, and that this is reflected through contrasting functions. We found that exposure to harder soil frost promoted species ß-diversity (species turnover) thus shifting the community composition of testate amoebae. In particular, we found that harder soil frost, and lower water-soluble phenolic compounds, induced functional turnover through the decrease of large species (-68%, >80µm) and the increase of small-bodied mixotrophic species (i.e. Archerella flavum; +79%). These results suggest that increased exposure to soil frost could be highly limiting for large species while smaller species are more resistant. Furthermore, we found that ß-glucosidase enzymatic activity, in addition to soil temperature, strongly depended of the functional diversity of testate amoebae (R2=0.95, ANOVA). Changing winter conditions can therefore strongly impact peatland decomposition process, though it remains unclear if these changes are carried-over to the growing season.


Assuntos
Amoeba/fisiologia , Biodiversidade , Congelamento , Solo/parasitologia , Áreas Alagadas
19.
Glob Chang Biol ; 22(12): 4114-4123, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27081764

RESUMO

Extreme climate events are predicted to become more frequent and intense. Their ecological impacts, particularly on carbon cycling, can differ in relation to ecosystem sensitivity. Peatlands, being characterized by peat accumulation under waterlogged conditions, can be particularly sensitive to climate extremes if the climate event increases soil oxygenation. However, a mechanistic understanding of peatland responses to persistent climate extremes is still lacking, particularly in terms of aboveground-belowground feedback. Here, we present the results of a transplantation experiment of peat mesocosms from high to low altitude in order to simulate, during 3 years, a mean annual temperature c. 5 °C higher and a mean annual precipitation c. 60% lower. Specifically, we aim at understanding the intensity of changes for a set of biogeochemical processes and their feedback on carbon accumulation. In the transplanted mesocosms, plant productivity showed a species-specific response depending on plant growth forms, with a significant decrease (c. 60%) in peat moss productivity. Soil respiration almost doubled and Q10 halved in the transplanted mesocosms in combination with an increase in activity of soil enzymes. Spectroscopic characterization of peat chemistry in the transplanted mesocosms confirmed the deepening of soil oxygenation which, in turn, stimulated microbial decomposition. After 3 years, soil carbon stock increased only in the control mesocosms whereas a reduction in mean annual carbon accumulation of c. 30% was observed in the transplanted mesocosms. Based on the above information, a structural equation model was built to provide a mechanistic understanding of the causal connections between peat moisture, vegetation response, soil respiration and carbon accumulation. This study identifies, in the feedback between plant and microbial responses, the primary pathways explaining the reduction in carbon accumulation in response to recurring climate extremes in peat soils.


Assuntos
Ciclo do Carbono , Carbono/análise , Temperatura , Áreas Alagadas , Clima , Solo/química
20.
Sci Rep ; 5: 16931, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603894

RESUMO

Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.


Assuntos
Carbono/metabolismo , Mudança Climática , Bactérias/metabolismo , Biomassa , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Metabolismo Energético , Fungos/metabolismo , Sphagnopsida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...