Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 53, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802968

RESUMO

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Assuntos
Evolução Molecular , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Homem de Neandertal , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Homem de Neandertal/genética , Seleção Genética/genética , Hominidae/genética , Haplótipos/genética , Densidade Óssea/genética , Genoma Humano/genética
2.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052486

RESUMO

Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication.


Assuntos
Conservadores da Densidade Óssea/efeitos adversos , Difosfonatos/efeitos adversos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Osteoporose Pós-Menopausa/tratamento farmacológico , Idoso , Estudos de Casos e Controles , Feminino , Fraturas do Fêmur/genética , Perfilação da Expressão Gênica , Humanos , Osteoporose Pós-Menopausa/patologia
3.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299011

RESUMO

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapêutico , Fraturas do Fêmur/enzimologia , Humanos , Incidência , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Filogenia , Alinhamento de Sequência
4.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419004

RESUMO

SOST encodes the sclerostin protein, which acts as a key extracellular inhibitor of the canonical Wnt pathway in bone, playing a crucial role in skeletal development and bone homeostasis. The objective of this work was to assess the functionality of two variants previously identified (the rare variant rs570754792 and the missense variant p.Val10Ile) and to investigate the physical interactors of the SOST proximal promoter region in bone cells. Through a promoter luciferase reporter assay we show that the minor allele of rs570754792, a variant located in the extended TATA box motif, displays a significant decrease in promoter activity. Likewise, through western blot studies of extracellular and intracellular sclerostin, we observe a reduced expression of the p.Val10Ile mutant protein. Finally, using a circular chromosome conformation capture assay (4C-seq) in 3 bone cell types (MSC, hFOB, Saos-2), we have detected physical interactions between the SOST proximal promoter and the ECR5 enhancer, several additional enhancers located between EVT4 and MEOX1 and a distant region containing exon 18 of DHX8. In conclusion, SOST presents functional regulatory and missense variants that affect its expression and displays physical contacts with far reaching genomic sequences, which may play a role in its regulation within bone cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Genômica , Alelos , Linhagem Celular , Elementos Facilitadores Genéticos , Genes Reporter , Humanos , Mutação de Sentido Incorreto , Osteoblastos/citologia , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , TATA Box/genética
5.
JBMR Plus ; 4(12): e10423, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354644

RESUMO

The DKK1 gene encodes an extracellular inhibitor of the Wnt pathway with an important role in bone tissue development, bone homeostasis, and different critical aspects of bone biology. Several BMD genome-wide association studies (GWASs) have consistently found association with SNPs in the DKK1 genomic region. For these reasons, it is important to assess the functionality of coding and regulatory variants in the gene. Here, we have studied the functionality of putative regulatory variants, previously found associated with BMD in different studies by others and ourselves, and also six missense variants present in the general population. Using a Wnt-pathway-specific luciferase reporter assay, we have determined that the variants p.Ala41Thr, p.Tyr74Phe, p.Arg120Leu, and p.Ser157Ile display a reduced DKK1 inhibitory capacity as compared with WT. This result agrees with the high-bone-mass (HBM) phenotype of two women from our cohort who carried mutations p.Tyr74Phe or p.Arg120Leu. On the other hand, by means of a circularized chromosome conformation capture- (4C-) sequencing experiment, we have detected that the region containing 24 BMD-GWA variants, located 350-kb downstream of DKK1, interacts both with DKK1 and the LNCAROD (LncRNA-activating regulator of DKK1, AKA LINC0148) in osteoblastic cells. In conclusion, we have shown that some rare coding variants are partial loss-of-function mutations that may lead to a HBM phenotype, whereas the common SNPs associated with BMD in GWASs belong to a putative long-range regulatory region, through a yet unknown mechanism involving LNCAROD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
J Inherit Metab Dis ; 43(1): 133-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942483

RESUMO

There are many metabolic disorders that present with bone phenotypes. In some cases, the pathological bone symptoms are the main features of the disease whereas in others they are a secondary characteristic. In general, the generation of the bone problems in these disorders is not well understood and the therapeutic options for them are scarce. Bone development occurs in the early stages of embryonic development where the bone formation, or osteogenesis, takes place. This osteogenesis can be produced through the direct transformation of the pre-existing mesenchymal cells into bone tissue (intramembranous ossification) or by the replacement of the cartilage by bone (endochondral ossification). In contrast, bone remodeling takes place during the bone's growth, after the bone development, and continues throughout the whole life. The remodeling involves the removal of mineralized bone by osteoclasts followed by the formation of bone matrix by the osteoblasts, which subsequently becomes mineralized. In some metabolic diseases, bone pathological features are associated with bone development problems but in others they are associated with bone remodeling. Here, we describe three examples of impaired bone development or remodeling in metabolic diseases, including work by others and the results from our research. In particular, we will focus on hereditary multiple exostosis (or osteochondromatosis), Gaucher disease, and the susceptibility to atypical femoral fracture in patients treated with bisphosphonates for several years.


Assuntos
Desenvolvimento Ósseo/fisiologia , Remodelação Óssea/fisiologia , Cartilagem/crescimento & desenvolvimento , Doenças Metabólicas/metabolismo , Osteogênese/fisiologia , Animais , Cartilagem/citologia , Condrócitos/ultraestrutura , Difosfonatos/uso terapêutico , Exostose Múltipla Hereditária/metabolismo , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/metabolismo , Doença de Gaucher/metabolismo , Humanos , Osteoclastos/metabolismo
7.
Bone ; 123: 39-47, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878523

RESUMO

Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Osteoporose/genética , Densidade Óssea/genética , Linhagem Celular Tumoral , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Desequilíbrio de Ligação/genética , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
8.
J Bone Miner Res ; 33(12): 2091-2098, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184270

RESUMO

Atypical femoral fractures (AFFs) are a rare but potentially devastating event, often but not always linked to bisphosphonate (BP) therapy. The pathogenic mechanisms underlying AFFs remain obscure, and there are no tests available that might assist in identifying those at high risk of AFF. We previously used exome sequencing to explore the genetic background of three sisters with AFFs and three additional unrelated AFF cases, all previously treated with BPs. We detected 37 rare mutations (in 34 genes) shared by the three sisters. Notably, we found a p.Asp188Tyr mutation in the enzyme geranylgeranyl pyrophosphate synthase, a component of the mevalonate pathway, which is critical to osteoclast function and is inhibited by N-BPs. In addition, the CYP1A1 gene, responsible for the hydroxylation of 17ß-estradiol, estrone, and vitamin D, was also mutated in all three sisters and one unrelated patient. Here we present a detailed list of the variants found and report functional analyses of the GGPS1 p.Asp188Tyr mutation, which showed a severe reduction in enzyme activity together with oligomerization defects. Unlike BP treatment, this genetic mutation will affect all cells in the carriers. RNAi knockdown of GGPS1 in osteoblasts produced a strong mineralization reduction and a reduced expression of osteocalcin, osterix, and RANKL, whereas in osteoclasts, it led to a lower resorption activity. Taken together, the impact of the mutated GGPPS and the relevance of the downstream effects in bone cells make it a strong candidate for AFF susceptibility. We speculate that other genes such as CYP1A1 might be involved in AFF pathogenesis, which remains to be functionally proved. The identification of the genetic background for AFFs provides new insights for future development of novel risk assessment tools. © 2018 American Society for Bone and Mineral Research.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Fraturas do Fêmur/genética , Fraturas do Fêmur/patologia , Fêmur/patologia , Geraniltranstransferase/genética , Mutação/genética , Animais , Feminino , Humanos , Camundongos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma
9.
Sci Rep ; 8(1): 10951, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026596

RESUMO

Numerous GWAS and candidate gene studies have highlighted the role of the Wnt pathway in bone biology. Our objective has been to study in detail the allelic architecture of three Wnt pathway genes: WNT16, DKK1 and SOST, in the context of osteoporosis. We have resequenced the coding and some regulatory regions of these three genes in two groups with extreme bone mineral density (BMD) (n = ∼50, each) from the BARCOS cohort. No interesting novel variants were identified. Thirteen predicted functional variants have been genotyped in the full cohort (n = 1490), and for ten of them (with MAF > 0.01), the association with BMD has been studied. We have found six variants nominally associated with BMD, of which 2 WNT16 variants predicted to be eQTLs for FAM3C (rs55710688, in the Kozak sequence and rs142005327, within a putative enhancer) withstood multiple-testing correction. In addition, two rare variants in functional regions (rs190011371 in WNT16b 3'UTR and rs570754792 in the SOST TATA box) were found only present in three women each, all with BMD below the mean of the cohort. Our results reinforce the higher importance of regulatory versus coding variants in these Wnt pathway genes and open new ways for functional studies of the relevant variants.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Marcadores Genéticos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Proteínas Wnt/genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Densidade Óssea , Citocinas/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Pós-Menopausa/genética , Locos de Características Quantitativas , Via de Sinalização Wnt
11.
Sci Rep ; 7: 44138, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281571

RESUMO

Opitz trigonocephaly C syndrome (OTCS) is a rare genetic disorder characterized by craniofacial anomalies, variable intellectual and psychomotor disability, and variable cardiac defects with a high mortality rate. Different patterns of inheritance and genetic heterogeneity are known in this syndrome. Whole exome and genome sequencing of a 19-year-old girl (P7), initially diagnosed with OTCS, revealed a de novo nonsense mutation, p.Q638*, in the MAGEL2 gene. MAGEL2 is an imprinted, maternally silenced, gene located at 15q11-13, within the Prader-Willi region. Patient P7 carried the mutation in the paternal chromosome. Recently, mutations in MAGEL2 have been described in Schaaf-Yang syndrome (SHFYNG) and in severe arthrogryposis. Patient P7 bears resemblances with SHFYNG cases but has other findings not described in this syndrome and common in OTCS. We sequenced MAGEL2 in nine additional OTCS patients and no mutations were found. This study provides the first clear molecular genetic basis for an OTCS case, indicates that there is overlap between OTCS and SHFYNG syndromes, and confirms that OTCS is genetically heterogeneous. Genes encoding MAGEL2 partners, either in the retrograde transport or in the ubiquitination-deubiquitination complexes, are promising candidates as OTCS disease-causing genes.


Assuntos
Craniossinostoses , Deficiência Intelectual , Mutação de Sentido Incorreto , Proteínas , Adulto , Craniossinostoses/genética , Craniossinostoses/metabolismo , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas/genética , Proteínas/metabolismo
12.
Am J Med Genet A ; 170A(1): 24-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768331

RESUMO

Opitz C trigonocephaly (or Opitz C syndrome, OTCS) and Bohring-Opitz syndrome (BOS or C-like syndrome) are two rare genetic disorders with phenotypic overlap. The genetic causes of these diseases are not understood. However, two genes have been associated with OTCS or BOS with dominantly inherited de novo mutations. Whereas CD96 has been related to OTCS (one case) and to BOS (one case), ASXL1 has been related to BOS only (several cases). In this study we analyze CD96 and ASXL1 in a group of 11 affected individuals, including 2 sibs, 10 of them were diagnosed with OTCS, and one had a BOS phenotype. Exome sequences were available on six patients with OTCS and three parent pairs. Thus, we could analyze the CD96 and ASXL1 sequences in these patients bioinformatically. Sanger sequencing of all exons of CD96 and ASXL1 was carried out in the remaining patients. Detailed scrutiny of the sequences and assessment of variants allowed us to exclude putative pathogenic and private mutations in all but one of the patients. In this patient (with BOS) we identified a de novo mutation in ASXL1 (c.2100dupT). By nature and location within the gene, this mutation resembles those previously described in other BOS patients and we conclude that it may be responsible for the condition. Our results indicate that in 10 of 11, the disease (OTCS or BOS) cannot be explained by small changes in CD96 or ASXL1. However, the cohort is too small to make generalizations about the genetic etiology of these diseases.


Assuntos
Antígenos CD/genética , Craniossinostoses/genética , Deficiência Intelectual/genética , Mutação/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Craniossinostoses/patologia , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Linhagem , Fenótipo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...