Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
J Neurochem ; 165(5): 701-721, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36636908

RESUMO

Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood. Here, we investigated the functional consequences of NRSF/REST deletion in primary cortical astrocytes derived from NRSF/REST conditional knockout mice (KO). We found that NRSF/REST KO astrocyte displayed a markedly reduced activity of inward rectifying K+ channels subtype 4.1 (Kir4.1) underlying spatial K+ buffering that was associated with a decreased expression and activity of the glutamate transporter-1 (GLT-1) responsible for glutamate uptake by astrocytes. The effects of the impaired astrocyte homeostatic functions on neuronal activity were investigated by co-culturing wild-type hippocampal neurons with NRSF/REST KO astrocytes. Interestingly, neurons experienced increased neuronal excitability at high firing rates associated with decrease after hyperpolarization and increased amplitude of excitatory postsynaptic currents. The data indicate that astrocytic NRSF/REST directly participates in neural circuit homeostasis by regulating intrinsic excitability and excitatory transmission and that dysfunctions of NRSF/REST expression in astrocytes may contribute to the pathogenesis of neurological disorders.


Assuntos
Astrócitos , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Astrócitos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica
3.
J Neuromuscul Dis ; 9(3): 457-462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466949

RESUMO

BACKGROUND: Proximal muscle weakness may be the presenting clinical feature of different types of myopathies, including limb girdle muscular dystrophy and primary mitochondrial myopathy. LGMD1B is caused by LMNA mutation. It is characterized by progressive weakness and wasting leading to proximal weakness, cardiomyopathy, and hearth conduction block. OBJECTIVE: In this article, we describe the case of a patient who presented with limb-girdle weakness and a double trouble scenario -mitochondrial DNA single deletion and a new LMNA mutation. METHODS: Pathophysiological aspects were investigated with muscle biopsy, Western Blot analysis, NGS nuclear and mtDNA analysis and neuromuscular imaging (muscle and cardiac MRI). RESULTS: Although secondary mitochondrial involvement is possible, a "double trouble" syndrome can not be excluded. CONCLUSION: Implication deriving from hypothetical coexistence of two different pathological conditions or the possible secondary mitochondrial involvement are discussed.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , DNA Mitocondrial/genética , Humanos , Lamina Tipo A/genética , Debilidade Muscular/complicações , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação
4.
Aging Cell ; 20(10): e13471, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520100

RESUMO

During aging, brain performances decline. Cellular senescence is one of the aging drivers and a key feature of a variety of human age-related disorders. The transcriptional repressor RE1-silencing transcription factor (REST) has been associated with aging and higher risk of neurodegenerative disorders. However, how REST contributes to the senescence program and functional impairment remains largely unknown. Here, we report that REST is essential to prevent the senescence phenotype in primary mouse neurons. REST deficiency causes failure of autophagy and loss of proteostasis, increased oxidative stress, and higher rate of cell death. Re-establishment of autophagy reverses the main hallmarks of senescence. Our data indicate that REST has a protective role in physiological aging by regulating the autophagic flux and the senescence program in neurons, with implications for neurological disorders associated with aging.


Assuntos
Autofagia/genética , Senescência Celular/genética , Neurônios/metabolismo , Proteínas Repressoras/deficiência , Animais , Humanos , Camundongos , Estresse Oxidativo
5.
Diagnostics (Basel) ; 11(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34574061

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs of about 20 nucleotides in length, involved in the regulation of many biochemical pathways in the human body. The level of miRNAs in tissues and circulation can be deregulated because of altered pathophysiological mechanisms; thus, they can be employed as biomarkers for different pathological conditions, such as cardiac diseases. This review summarizes published findings of these molecular biomarkers in the three most common structural cardiomyopathies: human dilated, arrhythmogenic and hypertrophic cardiomyopathy.

6.
Mol Ther ; 29(10): 3072-3092, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34058387

RESUMO

A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.


Assuntos
Síndrome de Down/terapia , Terapia Genética/métodos , Membro 2 da Família 12 de Carreador de Soluto/genética , Animais , Cloretos/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/psicologia , Técnicas de Silenciamento de Genes , Homeostase , Masculino , Camundongos , Neurônios/metabolismo , Interferência de RNA
7.
Cell Death Dis ; 12(2): 180, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589593

RESUMO

Neuroinflammation is associated with synapse dysfunction and cognitive decline in patients and animal models. One candidate for translating the inflammatory stress into structural and functional changes in neural networks is the transcriptional repressor RE1-silencing transcription factor (REST) that regulates the expression of a wide cluster of neuron-specific genes during neurogenesis and in mature neurons. To study the cellular and molecular pathways activated under inflammatory conditions mimicking the experimental autoimmune encephalomyelitis (EAE) environment, we analyzed REST activity in neuroblastoma cells and mouse cortical neurons treated with activated T cell or microglia supernatant and distinct pro-inflammatory cytokines. We found that REST is activated by a variety of neuroinflammatory stimuli in both neuroblastoma cells and primary neurons, indicating that a vast transcriptional change is triggered during neuroinflammation. While a dual activation of REST and its dominant-negative splicing isoform REST4 was observed in N2a neuroblastoma cells, primary neurons responded with a pure full-length REST upregulation in the absence of changes in REST4 expression. In both cases, REST upregulation was associated with activation of Wnt signaling and increased nuclear translocation of ß-catenin, a well-known intracellular transduction pathway in neuroinflammation. Among single cytokines, IL-1ß caused a potent and prompt increase in REST transcription and translation in neurons, which promoted a delayed and strong synaptic downscaling specific for excitatory synapses, with decreased frequency and amplitude of spontaneous synaptic currents, decreased density of excitatory synaptic connections, and decreased frequency of action potential-evoked Ca2+ transients. Most important, the IL-1ß effects on excitatory transmission were strictly REST dependent, as conditional deletion of REST completely occluded the effects of IL-1ß activation on synaptic transmission and network excitability. Our results demonstrate that REST upregulation represents a new pathogenic mechanism for the synaptic dysfunctions observed under neuroinflammatory conditions and identify the REST pathway as therapeutic target for EAE and, potentially, for multiple sclerosis.


Assuntos
Córtex Cerebral/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Proteínas Repressoras/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/citologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Repressoras/biossíntese , Transmissão Sináptica/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima
8.
Diagnostics (Basel) ; 11(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375374

RESUMO

MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18-24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.

9.
Nat Nanotechnol ; 15(8): 698-708, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601447

RESUMO

Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.


Assuntos
Pontos Quânticos , Retina/efeitos dos fármacos , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Injeções Intraoculares , Masculino , Estimulação Luminosa , Polímeros/administração & dosagem , Polímeros/farmacologia , Pontos Quânticos/administração & dosagem , Pontos Quânticos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo , Próteses Visuais
10.
Front Mol Neurosci ; 13: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194374

RESUMO

Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors found in mammals. While TAAR1 is expressed in several brain regions, all the other TAARs have been described mainly in the olfactory epithelium and the glomerular layer of the olfactory bulb and are believed to serve as a new class of olfactory receptors sensing innate odors. However, there is evidence that TAAR5 could play a role also in the central nervous system. In this study, we characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO) expressing beta-galactosidase mapping TAAR5 expression. We found that TAAR5 is expressed not only in the glomerular layer in the olfactory bulb but also in deeper layers projecting to the limbic brain olfactory circuitry with prominent expression in numerous limbic brain regions, such as the anterior olfactory nucleus, the olfactory tubercle, the orbitofrontal cortex (OFC), the amygdala, the hippocampus, the piriform cortex, the entorhinal cortex, the nucleus accumbens, and the thalamic and hypothalamic nuclei. TAAR5-KO mice did not show gross developmental abnormalities but demonstrated less anxiety- and depressive-like behavior in several behavioral tests. TAAR5-KO mice also showed significant decreases in the tissue levels of serotonin and its metabolite in several brain areas and were more sensitive to the hypothermic action of serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propilamino)tetralin (8-OH-DPAT). These observations indicate that TAAR5 is not just innate odor-sensing olfactory receptor but also serves to provide olfactory input into limbic brain areas to regulate emotional behaviors likely via modulation of the serotonin system. Thus, anxiolytic and/or antidepressant action of future TAAR5 antagonists could be predicted. In general, "olfactory" TAAR-mediated brain circuitry may represent a previously unappreciated neurotransmitter system involved in the transmission of innate odors into emotional behavioral responses.

11.
Cell Death Dis ; 11(1): 27, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937775

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Cell Death Dis ; 10(11): 864, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727880

RESUMO

Synapsin I is a phosphoprotein that coats the cytoplasmic side of synaptic vesicles and regulates their trafficking within nerve terminals. Autoantibodies against Syn I have been described in sera and cerebrospinal fluids of patients with numerous neurological diseases, including limbic encephalitis and clinically isolated syndrome; however, the effects and fate of autoantibodies in neurons are still unexplored. We found that in vitro exposure of primary hippocampal neurons to patient's autoantibodies to SynI decreased the density of excitatory and inhibitory synapses and impaired both glutamatergic and GABAergic synaptic transmission. These effects were reproduced with a purified SynI antibody and completely absent in SynI knockout neurons. Autoantibodies to SynI are internalized by FcγII/III-mediated endocytosis, interact with endogenous SynI, and promote its sequestration and intracellular aggregation. Neurons exposed to human autoantibodies to SynI display a reduced density of SVs, mimicking the SynI loss-of-function phenotype. Our data indicate that autoantibodies to intracellular antigens such as SynI can reach and inactivate their targets and suggest that an antibody-mediated synaptic dysfunction may contribute to the evolution and progression of autoimmune-mediated neurological diseases positive for SynI autoantibodies.


Assuntos
Autoanticorpos/imunologia , Doenças do Sistema Nervoso/imunologia , Sinapses/imunologia , Sinapsinas/genética , Animais , Autoanticorpos/genética , Citoplasma/genética , Citoplasma/imunologia , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Humanos , Encefalite Límbica/genética , Encefalite Límbica/imunologia , Camundongos , Doenças do Sistema Nervoso/genética , Neurônios , Transporte Proteico/genética , Sinapses/genética , Sinapsinas/imunologia , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/imunologia
13.
Front Physiol ; 10: 1161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572212

RESUMO

Cephalopods are highly evolved marine invertebrates that colonized almost all the oceans of the world at all depths. This imposed the occurrence of several modifications of their brain and body whose muscle component represents the major constituent. Hence, studying their muscle physiology may give important hints in the context of animal biology and environmental adaptability. One major pathway involved in muscle metabolism in vertebrates is the evolutionary conserved mTOR-signaling cascade; however, its role in cephalopods has never been elucidated. mTOR is regulating cell growth and homeostasis in response to a wide range of cues such as nutrient availability, body temperature and locomotion. It forms two functionally heteromeric complexes, mTORC1 and mTORC2. mTORC1 regulates protein synthesis and degradation and, in skeletal muscles, its activation upon exercise induces muscle growth. In this work, we characterized Octopus vulgaris mTOR full sequence and functional domains; we found a high level of homology with vertebrates' mTOR and the conservation of Ser2448 phosphorylation site required for mTORC1 activation. We then designed and tested an in vitro protocol of resistance exercise (RE) inducing fatigue in arm samples. We showed that, upon the establishment of fatigue, a transient increase in mTORC1 phosphorylation reaching a pick 30 min after exercise was induced. Our data indicate the activation of mTORC1 pathway in exercise paradigm and possibly in the regulation of energy homeostasis in octopus and suggest that mTORC1 activity can be used to monitor animal response to changes in physiological and ecological conditions and, more in general, the animal welfare.

14.
Adv Neurobiol ; 22: 51-79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073932

RESUMO

In recent years, the scientific community has witnessed an exponential increase in the use of nanomaterials for biomedical applications. In particular, the interest of graphene and graphene-based materials has rapidly risen in the neuroscience field due to the properties of this material, such as high conductivity, transparency and flexibility. As for any new material that aims to play a role in the biomedical area, a fundamental aspect is the evaluation of its toxicity, which strongly depends on material composition, chemical functionalization and dimensions. Furthermore, a wide variety of three-dimensional scaffolds have also started to be exploited as a substrate for tissue engineering. In this application, the topography is probably the most relevant amongst the various properties of the different materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation.This chapter discusses the in vitro approaches, ranging from microscopy analysis to physiology measurements, to investigate the interaction of graphene with the central nervous system. Moreover, the in vitro use of three-dimensional scaffolds is described and commented.


Assuntos
Técnicas de Cultura de Células/métodos , Grafite , Nanoestruturas , Neurônios/citologia , Diferenciação Celular , Humanos , Técnicas In Vitro , Engenharia Tecidual
15.
Small ; 15(15): e1900147, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30891923

RESUMO

The use of graphene nanomaterials (GNMs) for biomedical applications targeted to the central nervous system is exponentially increasing, although precise information on their effects on brain cells is lacking. In this work, the molecular changes induced in cortical astrocytes by few-layer graphene (FLG) and graphene oxide (GO) flakes are addressed. The results show that exposure to FLG/GO does not affect cell viability or proliferation. However, proteomic and lipidomic analyses unveil alterations in several cellular processes, including intracellular Ca2+ ([Ca2+ ]i ) homeostasis and cholesterol metabolism, which are particularly intense in cells exposed to GO. Indeed, GO exposure impairs spontaneous and evoked astrocyte [Ca2+ ]i signals and induces a marked increase in membrane cholesterol levels. Importantly, cholesterol depletion fully rescues [Ca2+ ]i dynamics in GO-treated cells, indicating a causal relationship between these GO-mediated effects. The results indicate that exposure to GNMs alters intracellular signaling in astrocytes and may impact astrocyte-neuron interactions.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Grafite/farmacologia , Homeostase , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipidômica , Proteoma/metabolismo , Ratos Sprague-Dawley
17.
Eur J Nucl Med Mol Imaging ; 46(5): 1184-1196, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30617965

RESUMO

PURPOSE: The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS: Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS: Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS: The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Retículo Endoplasmático/metabolismo , Fluordesoxiglucose F18/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Desidrogenases de Carboidrato/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Tomografia por Emissão de Pósitrons
18.
Mol Neurobiol ; 56(8): 5701-5714, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30671783

RESUMO

Local control of protein translation is a fundamental process for the regulation of synaptic plasticity. It has been demonstrated that the local protein synthesis occurring in axons and dendrites can be shaped by numerous mechanisms, including miRNA-mediated regulation. However, several aspects underlying this regulatory process have not been elucidated yet. Here, we analyze the differential miRNA profile in cell bodies and neurites of primary hippocampal neurons and find an enrichment of the precursor and mature forms of miR-218 in the neuritic projections. We show that miR-218 abundance is regulated during hippocampal development and by chronic silencing or activation of neuronal network. Overexpression and knockdown of miR-218 demonstrated that miR-218 targets the mRNA encoding the GluA2 subunit of AMPA receptors and modulates its expression. At the functional level, miR-218 overexpression increases glutamatergic synaptic transmission at both single neuron and network levels. Our data demonstrate that miR-218 may play a key role in the regulation of AMPA-mediated excitatory transmission and in the homeostatic regulation of synaptic plasticity.


Assuntos
MicroRNAs/metabolismo , Neuritos/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Sequência de Bases , Corpo Celular/metabolismo , Potenciais Pós-Sinápticos Excitadores , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Rede Nervosa/metabolismo
19.
Front Cell Neurosci ; 13: 580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998079

RESUMO

RE-1 Silencing Transcription factor (REST) controls several steps in neural development by modulating the expression of a wide range of neural genes. Alterations in REST expression have been associated with the onset of epilepsy; however, whether such alterations are deleterious or represent a protective homeostatic response remains elusive. To study the impact of REST modulation on seizure propensity, we developed a tool for its negative modulation in vivo. The tool is composed of the paired-amphipathic helix 1 (PAH1) domain, a competitive inhibitor of REST activation by mSin3, fused to the light-oxygen-voltage sensing 2 (LOV2) domain of Avena sativa phototropin 1, a molecular switch to alternatively hide or expose the PAH1 inhibitor. We employed the C450A and I539E light-independent AsLOV2 variants to mimic the closed (inactive) and open (active) states of LOV2-PAH1, respectively. Recombinant AAV1/2 viral particles (rAAVs) allowed LOV2-PAH1 expression in HEK293T cells and primary neurons, and efficiently transduced hippocampal neurons in vivo. mRNA expression analysis revealed an increased expression of several neuronal genes in the hippocampi of mice expressing the open probe. AAV-transduced mice received a single dose of kainic acid (KA), a treatment known to induce a transient increase of REST levels in the hippocampus. Remarkably, mice expressing the active variant displayed a reduced number of KA-induced seizures, which were less severe compared to mice carrying the inactive probe. These data support the validity of our tool to modulate REST activity in vivo and the potential impact of REST modulation on epileptogenesis.

20.
Nano Lett ; 18(9): 5827-5838, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30088941

RESUMO

Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.


Assuntos
Astrócitos/citologia , Grafite/metabolismo , Neurônios/citologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Grafite/química , Homeostase/efeitos dos fármacos , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Ratos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...