Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protein Pept Sci ; 25(2): 172-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37694793

RESUMO

INTRODUCTION: Trypsin inhibitors (TIs) have the ability to competitively or non-competitively bind to trypsin and inhibit its action. These inhibitors are commonly found in plants and are used in protease inhibition studies involved in biochemical pathways of pharmacological interest. OBJECTIVES: This work aimed to purify a trypsin inhibitor from Bauhinia pulchella seeds (BpuTI), describing its kinetic mechanism and anticoagulant effect. METHODS: Affinity chromatography, protein assay, and SDS-PAGE were used to purify the inhibitor. Mass spectrometry, inhibition assays, and enzyme kinetics were used to characterize the inhibitor. In vitro assays were performed to verify its ability to prolong blood clotting time. RESULTS: Affinity chromatography on a Trypsin-Sepharose 4B column gave a yield of 43.1. BpuTI has an apparent molecular mass of 20 kDa with glycosylation (1.15%). Protein identification was determined by MS/MS, and BpuTI showed similarity to several Kunitz-type trypsin inhibitors. BpuTI inhibited bovine trypsin as an uncompetitive inhibitor with IC50 (3 x 10-6 M) and Ki (1.05 x 10-6 M). Additionally, BpuTI showed high stability to temperature and pH variations, maintaining its activity up to 100ºC and in extreme pH ranges. However, the inhibitor was susceptible to reducing agents, such as DTT, which completely abolished its activity. BpuTI showed an anticoagulant effect in vitro at a concentration of 33 µM, prolonging clotting time by 2.6 times. CONCLUSION: Our results suggest that BpuTI can be a biological tool to be used in blood clotting studies.


Assuntos
Bauhinia , Inibidores da Tripsina , Animais , Bovinos , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Bauhinia/metabolismo , Tripsina/análise , Tripsina/química , Tripsina/metabolismo , Espectrometria de Massas em Tandem , Sementes/química , Anticoagulantes/farmacologia , Anticoagulantes/análise , Anticoagulantes/química
2.
Chem Biol Interact ; 382: 110639, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37468117

RESUMO

Lectins are proteins of non-immunological origin with the ability to bind to carbohydrates reversibly. They emerge as an alternative to conventional antifungals, given the ability to interact with carbohydrates in the fungal cell wall inhibiting fungal growth. The lectin from D. violacea (DVL) already has its activity described as anti-candida in some species. Here, we observed the anti-candida effect of DVL on C. albicans, C. krusei and C. parapsilosis and its multiple mechanisms of action toward the yeasts. Additionally, it was observed that DVL induces membrane and cell wall damage and ROS overproduction. DVL was also able to cause an imbalance in the redox system of the cells, interact with ergosterol, inhibit ergosterol biosynthesis, and induce cytochrome c release from the mitochondrial membrane. These results endorse the potential application of DVL in developing a new antifungal drug to fight back against fungal resistance.


Assuntos
Dioclea , Lectinas , Lectinas/farmacologia , Candida/metabolismo , Dioclea/metabolismo , Lectinas de Plantas/farmacologia , Lectinas de Plantas/metabolismo , Antifúngicos/farmacologia , Carboidratos , Sementes/metabolismo , Ergosterol , Candida albicans , Testes de Sensibilidade Microbiana
3.
Int J Biol Macromol ; 236: 123941, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893486

RESUMO

DVL is a Man/Glc-binding lectin from Dioclea violacea seeds that has the ability to interact with the antibiotic gentamicin. The present work aimed to evaluate whether the DVL has the ability to interact with neomycin via CRD and to examine the ability of this lectin to modulate the antibiotic effect of neomycin against multidrug-resistant strains (MDR). The hemagglutinating activity test revealed that neomycin inhibited the hemagglutinating activity of DVL with a minimum inhibitory concentration of 50 mM, indicating that the antibiotic interacts with DVL via the carbohydrate recognition domain (CRD). DVL immobilized on cyanogen bromide-activated Sepharose® 4B bound 41 % of the total neomycin applied to the column, indicating that the DVL-neomycin interaction is efficient for purification processes. Furthermore, the minimum inhibitory concentrations (MIC) obtained for DVL against all strains studied were not clinically relevant. However, when DVL was combined with neomycin, a significant increase in antibiotic activity was observed against S. aureus and P. aeruginosa. These results demonstrate the first report of lectin-neomycin interaction, indicating that immobilized DVL has the potential to isolate neomycin by affinity chromatography. Moreover, DVL increased the antibiotic activity of neomycin against MDR, suggesting that it is a potent adjuvant in the treatment of infectious diseases.


Assuntos
Dioclea , Fabaceae , Humanos , Masculino , Lectinas/farmacologia , Antibacterianos/farmacologia , Dioclea/química , Neomicina/farmacologia , Lectinas de Plantas/química , Staphylococcus aureus/metabolismo , Fabaceae/metabolismo
4.
Plant Sci ; 298: 110590, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771148

RESUMO

Peruvianin-I is a cysteine peptidase (EC 3.4.22) purified from Thevetia peruviana. Previous studies have shown that it is the only germin-like protein (GLP) with proteolytic activity described so far. In this work, the X-ray crystal structure of peruvianin-I was determined to a resolution of 2.15 Å (PDB accession number: 6ORM) and its specific location was evaluated by different assays. Its overall structure shows an arrangement composed of a homohexamer (a trimer of dimers) where each monomer exhibits a typical ß-barrel fold and two glycosylation sites (Asn55 and Asn144). Analysis of its active site confirmed the absence of essential amino acids for typical oxalate oxidase activity of GLPs. Details of the active site and molecular docking results, using a specific cysteine peptidase inhibitor (iodoacetamide), were used to discuss a plausible mechanism for proteolytic activity of peruvianin-I. Histological analyses showed that T. peruviana has articulated anastomosing laticifers, i.e., rows of cells which merge to form continuous tubes throughout its green organs. Moreover, peruvianin-I was detected exclusively in the latex. Because latex peptidases have been described as defensive molecules against insects, we hypothesize that peruvianin-I contributes to protect T. peruviana plants against herbivory.


Assuntos
Glicoproteínas/química , Proteínas de Plantas/química , Thevetia/química , Thevetia/metabolismo , Domínio Catalítico , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Proteólise
5.
Int J Biol Macromol ; 163: 19-25, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32599250

RESUMO

Lectins are a group of widely distributed and structurally heterogeneous proteins of nonimmune origin. These proteins have the ability to interact with glycans present on cell surfaces and elicit diverse biological activities. Machaerium acutifolium lectin (MaL) is an N-acetyl-D-glucosamine-binding lectin that exhibits antinociceptive activity via transient receptor potential cation channel subfamily V member 1 (TRPV1). Lectins that have the ability to recognize and interact with N-acetyl-D-glucosamine residues are potential candidates for studies of fungicidal activity. In this work, we show that MaL has antifungal activity against Candida species, and we describe its mode of action towards Candida parapsilosis. MaL inhibited the growth of C. albicans and C. parapsilosis. However, MaL was more potent against C. parapsilosis. The candidacidal mode of action of MaL on C. parapsilosis involves enhanced cell permeabilization, alteration of the plasma membrane proton-pumping ATPase function (H+-ATPase), induction of oxidative stress, and DNA damage. MaL also exhibited antibiofilm activity and noncytotoxicity to Vero cells. These results indicate that MaL is a promising candidate for the future development of a new, natural, and safe drug for the treatment of infections caused by C. parapsilosis.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/metabolismo , Estruturas da Membrana Celular/química , Fabaceae/química , Lectinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antifúngicos/administração & dosagem , Antifúngicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Candida parapsilosis/citologia , Candida parapsilosis/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Estruturas da Membrana Celular/metabolismo , Chlorocebus aethiops , Meios de Cultura/análise , Meios de Cultura/química , Dano ao DNA , Lectinas/administração & dosagem , Lectinas/isolamento & purificação , Microscopia Eletrônica de Varredura , Propídio/metabolismo , Sementes/química , Células Vero
6.
Protein Pept Lett ; 27(7): 593-603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31994998

RESUMO

BACKGROUND: Osmotin-Like Proteins (OLPs) have been purified and characterized from different plant tissues, including latex fluids. Besides its defensive role, tobacco osmotin seems to induce adiponectin-like physiological effects, acting as an agonist. However, molecular information about this agonistic effect on adiponectin receptors has been poorly exploited and other osmotins have not been investigated yet. OBJECTIVE AND METHODS: The present study involved the characterization of three OLPs from Plumeria rubra latex and molecular docking studies to evaluate the interaction between them and adiponectin receptors (AdipoR1 and AdipoR2). RESULTS: P. rubra Osmotin-Like Proteins (PrOLPs) exhibited molecular masses from 21 to 25 kDa and isoelectric points ranging from 4.4 to 7.7. The proteins have 16 cysteine residues, which are involved in eight disulfide bonds, conserved in the same positions as other plant OLPs. The threedimensional (3D) models exhibited the three typical domains of OLPs, and molecular docking analysis showed that two PrOLP peptides interacted with two adiponectin receptors similarly to tobacco osmotin peptide. CONCLUSION: As observed for tobacco osmotin, the latex osmotins of P. rubra exhibited compatible interactions with adiponectin receptors. Therefore, these plant defense proteins (without known counterparts in humans) are potential tools to study modulation of glucose metabolism in type II diabetes, where adiponectin plays a pivotal role in homeostasis.


Assuntos
Adiponectina/química , Apocynaceae/química , Simulação de Acoplamento Molecular , Peptídeos/química , Peptidomiméticos/química , Proteínas de Plantas/química , Humanos , Receptores de Adiponectina/química
7.
Probiotics Antimicrob Proteins ; 12(1): 82-90, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737650

RESUMO

The use of natural products together with standard antimicrobial drugs has recently received more attention as a strategy to combat infectious diseases caused by multidrug-resistant (MDR) microorganisms. This study aimed to evaluate the capacity of a galactose-binding lectin from Vatairea macrocarpa seeds (VML) to modulate antibiotic activity against standard and MDR Staphylococcus aureus and Escherichia coli bacterial strains. The minimum inhibitory concentration (MIC) obtained for VML against all strains was not clinically relevant (MIC ≥ 1024 µg/mL). However, when VML was combined with the antibacterial drugs gentamicin, norfloxacin and penicillin, a significant increase in antibiotic activity was observed against S. aureus, whereas the combination of VML and norfloxacin presented decreased and, hence, antagonistic antibiotic activity against E. coli. By its inhibition of hemagglutinating activity, gentamicin (MIC = 50 mM) revealed its interaction with the carbohydrate-binding site (CBS) of VML. Using molecular docking, it was found that gentamicin interacts with residues that constitute the CBS of VML with a score of - 120.79 MDS. It is this interaction between the antibiotic and the lectin's CBS that may be responsible for the enhanced activity of gentamicin in S. aureus. Thus, our results suggest that the VML can be an effective modulating agent against S. aureus. This is the first study to report the effect of lectins as modulators of bacterial sensitivity, and as such, the outcome of this study could lay the groundwork for future research involving the use of lectins and conventional antibiotics against such infectious diseases such as community-acquired methicillin-resistant S. aureus (MRSA).


Assuntos
Antibacterianos/farmacologia , Interações Medicamentosas , Fabaceae/química , Galectinas/farmacologia , Proteínas de Plantas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sementes/química
8.
Int J Biol Macromol ; 146: 841-852, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726163

RESUMO

Gentamicin is an aminoglycoside antibiotic used to treat infections of various origins. In the last few decades, the constant use of gentamicin has resulted in increased bacterial resistance and nephrotoxicity in some cases. In this study, we examined the ability of Dioclea violacea lectin (DVL) in modulate the antimicrobial activity of gentamicin and reduce the nephrotoxicity induced by this drug. The minimum inhibitory concentration (MIC) obtained for DVL against all strains studied was not clinically relevant (MIC ≥ 1024 µg/mL). However, when DVL was combined with gentamicin, a significant increase in antibiotic action was observed against Staphylococcus aureus and Escherichia coli. DVL also reduced antibiotic tolerance in S. aureus during 10 days of continuous treatment. In addition, DVL presented a nephroprotective effect, reducing sodium excretion, N-Gal expression and urinary protein, that are important markers of glomerular and tubular injuries. Taken together, studies of inhibition of hemagglutinating activity, fluorescence spectroscopy and molecular docking revealed that gentamicin can interact with DVL via the carbohydrate recognition domain (CRD), suggesting that the results obtained in this study may be directly related to the interaction of DVL-gentamicin and with the ability of the lectin to interact with glycans present in the cells of the peritoneum.


Assuntos
Antibacterianos/farmacologia , Dioclea/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Gentamicinas/farmacologia , Rim/patologia , Lectinas de Plantas/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Gentamicinas/química , Hemaglutinação/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/lesões , Rim/fisiopatologia , Masculino , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Coelhos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência
9.
Microb Pathog ; 135: 103629, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31325571

RESUMO

Lectins have been studied in the past few years as an alternative to inhibit the development of pathogenic bacteria and gastrointestinal nematodes of small ruminants. The development of new antibacterial and anthelmintic compounds is necessary owing to the increase in drug resistance among important pathogens. Therefore, this study aimed to evaluate the capacity of a glucose/mannose-binding lectin from Parkia platycephala seeds (PPL) to inhibit the development of Haemonchus contortus and to modulate antibiotic activity against multi-resistant bacterial strains, thereby confirming its efficacy when used in combination with gentamicin. PPL at the concentration of 1.2 mg/mL did not show inhibitory activity on H. contortus in the egg hatch test or the exsheathment assay. However, it did show significant inhibition of H. contortus larval development with an IC50 of 0.31 mg/mL. The minimum inhibitory concentration (MIC) obtained for PPL against all tested bacterial strains was not clinically relevant (MIC ≥ 1024 µg/mL). However, when PPL was combined with gentamicin, a significant increase in antibiotic activity was observed against S. aureus and E.coli multi-resistant strains. The inhibition of hemagglutinating activity by gentamicin (MIC = 50 mM) revealed that it may be interacting with the carbohydrate-binding site of PPL. It is this interaction between the antibiotic and lectin carbohydrate-binding site that may be responsible for the enhanced activity of gentamicin against multi-resistant strains. It can be concluded that PPL showed selective anthelmintic effect, inhibiting the development of H. contortus larvae and that it increased the effect of the antibiotic gentamicin against multi-resistant bacterial strains, thus constituting a potential therapeutic resource against resistant bacterial strains and H. contortus.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fabaceae/química , Haemonchus/efeitos dos fármacos , Haemonchus/crescimento & desenvolvimento , Lectinas/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Helmínticos/farmacologia , Gentamicinas/farmacologia , Haemonchus/microbiologia , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Sementes/química , Staphylococcus aureus/efeitos dos fármacos
10.
Plant Physiol Biochem ; 140: 68-77, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085448

RESUMO

Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (∼14 kDa), constituted by a small chain of approximately 4 kDa and a large chain of 8 kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (∼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.


Assuntos
Moringa oleifera/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Humanos , Proteínas de Plantas/química , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional
11.
Arch Biochem Biophys ; 664: 149-156, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30772259

RESUMO

A new mannose/N-acetyl-dglucosamine-specific lectin, named MaL, was purified from seeds of Machaerium acutifolium by precipitation with ammonium sulfate, followed by affinity and ion-exchange chromatography. MaL haemagglutinates either native rabbit erythrocytes or those treated with proteolytic enzymes. MaL is highly stable by the ability to maintain its haemagglutinating activity after exposure to temperatures up to 50 °C. The lectin haemagglutinating activity was optimum between pH 6.0 and 7.0 and inhibited after incubation with d-mannose and N-acetyl-d-glucosamine and α-methyl-d-mannopyranoside. MaL is a glycoprotein with relative molecular mass of 29 kDa (α-chain), 13 kDa (ß-chain) and 8 kDa (γ-chain) with secondary structure composed of 3% α-helix, 44% ß-sheet, 21% ß-turn, and 32% coil. The orofacial antinociceptive activity of the lectin was also evaluated. MaL (0.03 mg mL-1) reduced orofacial nociception induced by capsaicin, an effect that occurred via carbohydrate recognition domain interaction, suggesting an interaction of MaL with the transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor. Our results confirm the potential pharmacological relevance of MaL as an inhibitor of acute orofacial mediated by TRPV1.


Assuntos
Acetilglucosamina/química , Fabaceae/química , Dor Facial/tratamento farmacológico , Lectinas/isolamento & purificação , Lectinas/uso terapêutico , Manose/química , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Feminino , Lectinas/química , Masculino , Estrutura Secundária de Proteína , Coelhos , Espectrometria de Massas em Tandem , Peixe-Zebra
12.
Int J Biol Macromol ; 126: 1167-1176, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625353

RESUMO

The germin-like protein (GLP) purified from Thevetia peruviana, Peruvianin-I, is the only one described as having proteolytic activity. Therefore, the goal of this study was to investigate the structural features responsible for its enzymatic activity. Although the amino acid sequence of Peruvianin-I showed high identity with other GLPs, it exhibited punctual mutations, which were responsible for the absence of oxalate oxidase activity. The phylogenetic analysis showed that Peruvianin-I does not belong to any classification of GLP subfamilies. Moreover, Peruvianin-I contains a catalytic triad found in all plant cysteine peptidases. Molecular docking simulations confirmed the role of the catalytic triad in its proteolytic activity. Synchrotron radiation circular dichroism assays confirmed that Peruvianin-I was stable at pH ranging from 5.0 to 8.0 and that it presented significant structural changes only above 60 °C. The addition of iodoacetamide caused changes in its native conformation, but only a slight effect was observed after adding a reducing agent. This study reports an unusual protein with germin-like structure, lacking typical oxalate oxidase activity. Instead, the proteolytic activity observed suggests that the protein is a cysteine peptidase. These structural peculiarities make Peruvianin­I an interesting model for further understanding of the action of laticifer fluids in plant defense.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteólise , Thevetia/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Filogenia , Inibidores de Proteases/farmacologia , Substâncias Redutoras/química , Análise de Sequência de Proteína , Especificidade por Substrato/efeitos dos fármacos , Temperatura
13.
Mol Biochem Parasitol ; 225: 67-72, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30217772

RESUMO

Haemonchus contortus is one of the most economically important parasites infecting small ruminants worldwide. This nematode has shown a great ability to develop resistance to anthelmintic drugs, calling for the development of alternative control approaches. Because lectins recognize and bind to specific carbohydrates and glycan structures present in parasites, they can be considered as an alternative to develop new antiparasitic drugs. Accordingly, this work aimed to investigate the anthelmintic effect of Canavalia brasiliensis (ConBr) lectin against H. contortus and to evaluate a possible interaction of ConBr with glycans of this parasite by molecular docking. ConBr showed significant inhibition of H. contortus larval development with an IC50 of 0.26 mg mL-1. Molecular docking assays revealed that glycans containing the core trimannoside [Man(α1-3)Man(α1-6)Man] of H. contortus interact in the carbohydrate recognition domain of ConBr with an interaction value of MDS = -248.77. Our findings suggest that the inhibition of H. contortus larval development is directly related to the recognition of the core trimannoside present in the glycans of these parasites. This work is the first to report on the structure-function relationships of the anthelmintic activity of plant lectins.


Assuntos
Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Haemonchus/efeitos dos fármacos , Manosídeos/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Animais , Anti-Helmínticos/isolamento & purificação , Sítios de Ligação , Canavalia/química , Haemonchus/crescimento & desenvolvimento , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Lectinas de Plantas/isolamento & purificação , Ligação Proteica
15.
Int J Biol Macromol ; 117: 565-573, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847781

RESUMO

Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding ß-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of ß-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to ß-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of ß-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut.


Assuntos
Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Vigna/genética , Animais , Sítios de Ligação , Quitina/química , Quitina/genética , Clonagem Molecular , Besouros/patogenicidade , DNA Complementar/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/química , Ligação Proteica , Proteínas de Armazenamento de Sementes/química , Sementes/química , Sementes/genética , Vigna/crescimento & desenvolvimento
16.
Front Microbiol ; 8: 980, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634471

RESUMO

Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9) with 4.1% (m/m) sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45-37.90 and 155.84-260.29 µM, respectively. In addition, Mo-CBP2 (18.90 µM) increased the cell membrane permeabilization and reactive oxygen species production in C. albicans and promoted degradation of circular plasmid DNA (pUC18) from Escherichia coli. The data presented in this study highlight the potential use of Mo-CBP2 as an anticandidal agent, based on its ability to inhibit Candida spp. growth with apparently low toxicity on mammalian cells.

17.
Phytochemistry ; 139: 60-71, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414935

RESUMO

The genus Swartzia is a member of the tribe Swartzieae, whose genera constitute the living descendants of one of the early branches of the papilionoid legumes. Legume lectins comprise one of the main families of structurally and evolutionarily related carbohydrate-binding proteins of plant origin. However, these proteins have been poorly investigated in Swartzia and to date, only the lectin from S. laevicarpa seeds (SLL) has been purified. Moreover, no sequence information is known from lectins of any member of the tribe Swartzieae. In the present study, partial cDNA sequences encoding L-type lectins were obtained from developing seeds of S. simplex var. grandiflora. The amino acid sequences of the S. simplex grandiflora lectins (SSGLs) were only averagely related to the known primary structures of legume lectins, with sequence identities not greater than 50-52%. The SSGL sequences were more related to amino acid sequences of papilionoid lectins from members of the tribes Sophoreae and Dalbergieae and from the Cladratis and Vataireoid clades, which constitute with other taxa, the first branching lineages of the subfamily Papilionoideae. The three-dimensional structures of 2 representative SSGLs (SSGL-A and SSGL-E) were predicted by homology modeling using templates that exhibit the characteristic ß-sandwich fold of the L-type lectins. Molecular docking calculations predicted that SSGL-A is able to interact with D-galactose, N-acetyl-D-galactosamine and α-lactose, whereas SSGL-E is probably a non-functional lectin due to 2 mutations in the carbohydrate-binding site. Using molecular dynamics simulations followed by density functional theory calculations, the binding free energies of the interaction of SSGL-A with GalNAc and α-lactose were estimated as -31.7 and -47.5 kcal/mol, respectively. These findings gave insights about the carbohydrate-binding specificity of SLL, which binds to immobilized lactose but is not retained in a matrix containing D-GalNAc as ligand.


Assuntos
DNA Complementar/genética , Fabaceae/genética , Lectinas Tipo C/genética , Lectinas de Plantas/genética , Sequência de Aminoácidos , Carboidratos/análise , Fabaceae/química , Galactose/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Grupos Populacionais , Sementes/química
18.
Planta ; 243(5): 1115-28, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26794967

RESUMO

MAIN CONCLUSION: The latex from Thevetia peruviana is rich in plant defense proteins, including a 120 kDa cysteine peptidase with structural characteristics similar to germin-like proteins. More than 20,000 plant species produce latex, including Apocynaceae, Sapotaceae, Papaveraceae and Euphorbiaceae. To better understand the physiological role played by latex fluids, a proteomic analysis of Thevetia peruviana (Pers.) Schum latex was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 33 proteins (86 %) were identified, including storage proteins, a peptidase inhibitor, cysteine peptidases, peroxidases and osmotins. An unusual cysteine peptidase, termed peruvianin-I, was purified from the latex by a single chromatographic step involving gel filtration. The enzyme (glycoprotein) was inhibited by E-64 and iodoacetamide and exhibited high specific activity towards azocasein (K m 17.6 µM), with an optimal pH and temperature of 5.0-6.0 and 25-37 °C, respectively. Gel filtration chromatography, two-dimensional gel electrophoresis, and mass spectrometry revealed that peruvianin-I possesses 120 kDa, pI 4.0, and six subunits (20 kDa). A unique N-terminal amino acid sequence was obtained to oligomer and monomers of peruvianin-I (1ADPGPLQDFCLADLNSPLFINGYPCRNPALAISDDF36). High-resolution images from atomic force microscopy showed the homohexameric structure of peruvianin-I may be organized as a trimer of dimers that form a central channel similar to germin-like proteins. Peruvianin-I exhibited no oxalate oxidase and superoxide dismutase activity or antifungal effects. Peruvianin-I represents the first germin-like protein (GLP) with cysteine peptidase activity, an activity unknown in the GLP family so far.


Assuntos
Látex/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Thevetia/química , Antifúngicos/farmacologia , Caseínas/metabolismo , Cisteína Proteases/isolamento & purificação , Cisteína Proteases/metabolismo , Cisteína Proteases/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Látex/metabolismo , Espectrometria de Massas/métodos , Proteínas de Plantas/isolamento & purificação , Proteômica/métodos
19.
Int J Biol Macromol ; 82: 464-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499084

RESUMO

Lectins are proteins that show a variety of biological activities. However, they share in common at least one domain capable of recognizing specific carbohydrates reversibly without changing its structure. The legume lectins family is the most studied family of plant lectins, in particular the Diocleinae subtribe, which possesses high degree of structural similarity, but variable biological activities. This variability lies in small differences that can be analyzed in studies based on structures. In particular, Dioclea sclerocarpa seed lectin (DSL) presents low ability to relax endothelialized rat aorta in comparison with other Dioclea lectins such as Dioclea violacea (DVL), Dioclea virgata (DvirL) and Dioclea rostrata (DRL). The DSL relaxation mechanism relies on nitric oxide production and carbohydrate recognition domain (CRD). This feature can be explained by structural differences, since DSL has a carbohydrate recognition domain design less favorable. In addition, the presence of a glutamate residue at position 205 proved to be a decisive factor for the low relaxant effect of Dioclea lectins.


Assuntos
Dioclea/química , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Sítios de Ligação , Carboidratos/química , Modelos Moleculares , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Conformação Proteica , Ratos , Relação Estrutura-Atividade , Vasodilatadores/isolamento & purificação
20.
Arch Biochem Biophys ; 565: 32-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25444858

RESUMO

Lectins are proteins able to recognize carbohydrates, without modifying their structure, via the carbohydrate-recognition domain (CRD). Here, the three-dimensional structure of the mannose-binding lectin isolated from Cymbosema roseum (CRLI) was determined with X-man molecule modeled into the carbohydrate recognition domain. CRLI relaxant activity in thoracic rat aorta was also investigated, and based on the results, a molecular docking of CRLI with heparan sulfate was performed to investigate the possible interaction with mechanoreceptors involved in vasorelaxation. CRLI (IC50=12.4 µg mL(-)(1)) elicited vasorelaxant response (96%) in endothelialized rat aorta contracted with phenylephrine. Endothelium-derived relaxant factors, extracellular calcium (Ca(2+)e) and muscarinic receptors were also evaluated as putative participants in the CRLI relaxant effect. CRLI relaxant effect was blocked by L-NAME, a nonselective inhibitor of nitric oxide synthase (NOS), and partially inhibited in a calcium-free solution (0Ca) and by atropine, but it remained unchanged in the presence of indomethacin and TEA. In summary, our data suggest interaction between CRLI and muscarinic receptors located in vascular endothelial cells leading to NOS activation triggered by a mechanism that involves Ca(2+)e along with the ability of CRLI to interact with heparan sulfate, a highly rated mechanoreceptor involved in eNOS activation.


Assuntos
Fabaceae/química , Lectina de Ligação a Manose/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas de Plantas/farmacologia , Receptores Muscarínicos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Indometacina/farmacologia , Masculino , Lectina de Ligação a Manose/química , Músculo Liso Vascular/citologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Proteínas de Plantas/química , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...