Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Transl Eng Health Med ; 11: 261-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056793

RESUMO

OBJECTIVE: Long term behavioural disturbances and interventions in healthy habits (mainly eating and physical activity) are the primary cause of childhood obesity. Current approaches for obesity prevention based on health information extraction lack the integration of multi-modal datasets and the provision of a dedicated Decision Support System (DSS) for health behaviour assessment and coaching of children. METHODS: Continuous co-creation process has been applied in the frame of the Design Thinking Methodology, involving children, educators and healthcare professional in the whole process. Such considerations were used to derive the user needs and the technical requirements needed for the conception of the Internet of Things (IoT) platform based on microservices. RESULTS: To promote the adoption of healthy habits and the prevention of the obesity onset for children (9-12 years old), the proposed solution empowers children -including families and educators- in taking control of their health by collecting and following-up real-time information about nutrition, physical activity data coming from IoT devices, and interconnecting healthcare professionals to provide a personalised coaching solution. The validation has two phases involving +400 children (control/intervention group), on four schools in three countries: Spain, Greece and Brazil. The prevalence of obesity decreased in 75.5% from baseline levels in the intervention group. The proposed solution created a positive impression and satisfaction from the technology acceptance perspective. CONCLUSIONS: Main findings confirm that this ecosystem can assess behaviours of children, motivating and guiding them towards achieving personal goals. Clinical and Translational Impact Statement-This study presents Early Research on the adoption of a smart childhood obesity caring solution adopting a multidisciplinary approach; it involves researchers from biomedical engineering, medicine, computer science, ethics and education. The solution has the potential to decrease the obesity rates in children aiming to impact to get a better global health.


Assuntos
Obesidade Infantil , Humanos , Criança , Obesidade Infantil/epidemiologia , Ecossistema , Escolaridade , Pessoal de Saúde , Hábitos
2.
Artif Intell Med ; 104: 101844, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32498995

RESUMO

BACKGROUND: Digital health interventions based on tools for Computerized Decision Support (CDS) and Machine Learning (ML), which take advantage of new information, sensing and communication technologies, can play a key role in childhood obesity prevention and treatment. OBJECTIVES: We present a systematic literature review of CDS and ML applications for the prevention and treatment of childhood obesity. The main characteristics and outcomes of studies using CDS and ML are demonstrated, to advance our understanding towards the development of smart and effective interventions for childhood obesity care. METHODS: A search in the bibliographic databases of PubMed and Scopus was performed to identify childhood obesity studies incorporating either CDS interventions, or advanced data analytics through ML algorithms. Ongoing, case, and qualitative studies, along with those not providing specific quantitative outcomes were excluded. The studies incorporating CDS were synthesized according to the intervention's main technology (e.g., mobile app), design type (e.g., randomized controlled trial), number of enrolled participants, target age of children, participants' follow-up duration, primary outcome (e.g., Body Mass Index (BMI)), and main CDS feature(s) and their outcomes (e.g., alerts for caregivers when BMI is high). The studies incorporating ML were synthesized according to the number of subjects included and their age, the ML algorithm(s) used (e.g., logistic regression), as well as their main outcome (e.g., prediction of obesity). RESULTS: The literature search identified 8 studies incorporating CDS interventions and 9 studies utilizing ML algorithms, which met our eligibility criteria. All studies reported statistically significant interventional or ML model outcomes (e.g., in terms of accuracy). More than half of the interventional studies (n = 5, 63 %) were designed as randomized controlled trials. Half of the interventional studies (n = 4, 50 %) utilized Electronic Health Records (EHRs) and alerts for BMI as means of CDS. From the 9 studies using ML, the highest percentage targeted at the prognosis of obesity (n = 4, 44 %). In the studies incorporating more than one ML algorithms and reporting accuracy, it was shown that decision trees and artificial neural networks can accurately predict childhood obesity. CONCLUSIONS: This review has found that CDS tools can be useful for the self-management or remote medical management of childhood obesity, whereas ML algorithms such as decision trees and artificial neural networks can be helpful for prediction purposes. Further rigorous studies in the area of CDS and ML for childhood obesity care are needed, considering the low number of studies identified in this review, their methodological limitations, and the scarcity of interventional studies incorporating ML algorithms in CDS tools.


Assuntos
Aplicativos Móveis , Obesidade Infantil , Criança , Humanos , Aprendizado de Máquina , Obesidade Infantil/diagnóstico , Obesidade Infantil/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...