Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 44(10): 2065-2074, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32609911

RESUMO

Cyperaceae representatives present peculiar microsporogenesis and microgametogenesis, which raises the question of how regular the sedge pollen is. In order to answer this question, preanthesis pollen grains of Cyperaceae individuals were analyzed under different tools such as light and transmission electron microscopy, which included cytochemistry and immunogold procedures. The results showed that maturing pollen in Cyperaceae presents some unusual endomembrane behaviors. Endoplasmic reticulum and dictyosomes are concerned in classic secretion pathways in vegetative cells, and possibly the late breakdown of degenerative microspores. However, cortical and concentric endoplasmic reticulum are also present and are possibly related to other functions aside the biosynthetic pathway. Unconventional secretion of large membrane-bound bodies containing cell wall precursors was also observed and confirmed by immunogold. However, since these bodies most likely receive material from dictyosomes, as observed in silver nitrate reaction, the "unconventional" status of this secretion is debatable. Reports of the literature show that these unusual endomembrane formations are not exclusive of the sedge pollen, but little attention have been given to them so far. This could represent an opportunity to re-examine our understanding on the endomembrane system in pollen cells in general.


Assuntos
Cyperaceae , Retículo Endoplasmático/ultraestrutura , Gametogênese Vegetal , Complexo de Golgi/ultraestrutura , Pólen/ultraestrutura
2.
J Exp Bot ; 67(18): 5391-5401, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27492982

RESUMO

Members of the Cyperaceae family exhibit an asymmetric microsporogenesis that results in the degeneration of three out of four meiotic products. Efforts have been made previously to describe the resulting structure, named the pseudomonad, but mechanisms concerning the establishment of cell domains, nuclear development, and programmed cell death are largely unknown. Using the Rhynchospora genus as a model, evidence for cell asymmetry, cytoplasmic isolation, and programmed cell death was obtained by a combination of electron microscopic, cytochemical, immunocytochemical, in situ hybridization, and flow cytometric methods. Degenerative cells were identified at the abaxial region, with the cytoskeleton marking their delimitation from the functional domain after meiosis. After attempting to initiate cell division with an unreplicated genome and abnormal spindle assembly, these cells exhibited a gradual process of cytoplasmic contraction associated with hypermethylation of cytosines and differential loss of DNA. These results indicate that the asymmetric tetrad establishes a functional cell, where one nucleus is preferentially selected to survive. Degenerative haploid cells are then eliminated in a multistep process associated with mitotic disorder, non-random elimination of repetitive DNA, vacuolar cell death, and DNA fragmentation.


Assuntos
Morte Celular/fisiologia , Cyperaceae/fisiologia , Gametogênese Vegetal/fisiologia , Divisão Celular/fisiologia , Cyperaceae/ultraestrutura , Citoplasma/fisiologia , Citoesqueleto/fisiologia , Hibridização In Situ , Meiose/fisiologia , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...