Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Med. oral patol. oral cir. bucal (Internet) ; 28(6): e519-e524, nov. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-227369

RESUMO

Background: The aim of the present study was to calibrate the Periotron® model 8010 with volumes of three different fluids (distilled water, serum, and saliva) and to identify which of the three is the most reliable, feasible, and reproducible for routine calibration. Material and Methods: A total of 450 samples of Periopaper® were divided into three groups (150 each per group): distilled water, serum matrix and saliva. A calibration curve was run with 0.25, 0.50, 0.75, 1.00 and 1.25 µl of each of the fluids, and the results were determined in Periotron units (PU). Statistical analysis was performed with oneway ANOVA followed by Bonferroni’s post hoc test and a linear equation. Results: Distilled water presented the lowest levels of PU at all volumes, while serum showed the highest levels at high volumes. Linear regression equations rendered similar slopes for saliva and distilled water, while serum was statistically different. Saliva presented a reproduction percentage of 99.7%, which indicated better accuracy and precision than serum and distilled water. Conclusions: Saliva is more reliable and accurate than water or serum for the purpose of calibration of the Periotron® model 8010, though it shares drawbacks with serum. Distilled water is more easily available and does not require any additional procedure, in addition to producing a similar slope to saliva and a smaller deviation from the media than serum. (AU)


Assuntos
Humanos , Saliva , Água , Calibragem , Análise de Variância , Doenças Periodontais , Espanha
2.
Redox Biol ; 66: 102849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591012

RESUMO

OBJECTIVE: Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients. RESEARCH DESIGN AND METHODS: Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis. RESULTS: Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment. CONCLUSIONS: GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Endoteliais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Espessura Intima-Media Carotídea , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Leucócitos , Endotélio , Peptídeo 1 Semelhante ao Glucagon
3.
Antioxid Redox Signal ; 39(4-6): 278-320, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36641637

RESUMO

Significance: Type 2 diabetes mellitus, which is related to oxidative stress and mitochondrial dysfunction, is one of the most prevalent diseases in the world. In the past decade, alterations in autophagy have been shown to play a fundamental role in the development and control of type 2 diabetes. Further, mitophagy has been recognized as a key player in eliminating dysfunctional mitochondria in this disease. Recent Advances: Recently, much progress has been made in understanding the molecular events associated with oxidative stress, mitochondrial dysfunction, and alterations in autophagy and mitophagy in type 2 diabetes. Critical Issues: Despite increasing evidence of a relationship between mitochondrial dysfunction, oxidative stress, and alterations of autophagy and mitophagy and their role in the pathophysiolology of type 2 diabetes, effective therapeutic strategies to combat the disease through targeting mitochondria, autophagy, and mitophagy are yet to be implemented. Future Directions: This review provides a wide perspective of the existing literature concerning the complicated interplay between autophagy, mitophagy, and mitochondrial dysfunction in type 2 diabetes. Further, potential therapeutic targets based on these molecular mechanisms are explored. Antioxid. Redox Signal. 39, 278-320.


Assuntos
Diabetes Mellitus Tipo 2 , Mitofagia , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/metabolismo , Autofagia/fisiologia , Estresse Oxidativo
4.
Antioxidants (Basel) ; 11(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36421483

RESUMO

Gold-ceria nanoparticles (Au/CeO2) are known to have antioxidant properties. However, whether these nanoparticles can provide benefits in type 2 diabetes mellitus (T2D) remains unknown. This work aimed to study the effects of Au/CeO2 nanoparticles at different rates of gold purity (10, 4.4, 1.79 and 0.82) on leukocyte-endothelium interactions and inflammation in T2D patients. Anthropometric and metabolic parameters, leukocyte-endothelium interactions, ROS production and NF-κB expression were assessed in 57 T2D patients and 51 healthy subjects. T2D patients displayed higher Body Mass Index (BMI) and characteristic alterations in carbohydrate and lipid metabolism. ROS production was increased in leukocytes of T2D patients and decreased by Au/CeO2 at 0.82% gold. Interestingly, Au/CeO2 0.82% modulated leukocyte-endothelium interactions (the first step in the atherosclerotic process) by increasing leukocyte rolling velocity and decreasing rolling flux and adhesion in T2D. A static adhesion assay also revealed diminished leukocyte-endothelium interactions by Au/CeO2 0.82% treatment. NF-κB (p65) levels increased in T2D patients and were reduced by Au/CeO2 treatment. Cell proliferation, viability, and apoptosis assays demonstrated no toxicity produced by Au/CeO2 nanoparticles. These results demonstrate that Au/CeO2 nanoparticles at 0.82% exert antioxidant and anti-inflammatory actions in the leukocyte-endothelium interaction of T2D patients, suggesting a protective role against the appearance of atherosclerosis and cardiovascular diseases when this condition exists.

5.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883794

RESUMO

The chronic low-grade inflammation widely associated with obesity can lead to a prooxidant status that triggers mitochondrial dysfunction. To date, Roux-en-Y gastric bypass (RYGB) is considered the most effective strategy for obese patients. However, little is known about its molecular mechanisms. This interventional study aimed to investigate whether RYGB modulates oxidative stress, inflammation and mitochondrial dynamics in the leukocytes of 47 obese women at one year follow-up. We evaluated biochemical parameters and serum inflammatory cytokines -TNFα, IL6 and IL1ß- to assess systemic status. Total superoxide production -dHe-, mitochondrial membrane potential -TMRM-, leucocyte protein expression of inflammation mediators -MCP1 and NF-kB-, antioxidant defence -GPX1-, mitochondrial regulation-PGC1α, TFAM, OXPHOS and MIEAP- and dynamics -MFN2, MNF1, OPA1, FIS1 and p-DRP1- were also determined. After RYGB, a significant reduction in superoxide and mitochondrial membrane potential was evident, while GPX1 content was significantly increased. Likewise, a marked upregulation of the transcription factors PGC1α and TFAM, complexes of the oxidative phosphorylation chain (I-V) and MIEAP and MFN1 was observed. We conclude that women undergoing RYGB benefit from an amelioration of their prooxidant and inflammatory status and an improvement in mitochondrial dynamics of their leukocytes, which is likely to have a positive effect on clinical outcome.

6.
Redox Biol ; 53: 102342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605453

RESUMO

Type 2 diabetes is a chronic metabolic disease that affects mitochondrial function. In this context, the rescue mechanisms of mitochondrial health, such as mitophagy and mitochondrial biogenesis, are of crucial importance. The gold standard for the treatment of type 2 diabetes is metformin, which has a beneficial impact on the mitochondrial metabolism. In this study, we set out to describe the effect of metformin treatment on mitochondrial function and mitophagy in peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients. We performed a preliminary cross-sectional observational study complying with CONSORT requirements, for which we recruited 242 subjects, divided into 101 healthy volunteers, 93 metformin-treated type 2 diabetic patients and 48 non-metformin-treated type 2 diabetic patients. Mitochondria from the type 2 diabetic patients not treated with metformin displayed more reactive oxygen species (ROS) than those from healthy or metformin-treated subjects. Protein expression of the electron transport chain (ETC) complexes was lower in PBMCs from type 2 diabetic patients without metformin treatment than in those from the other two groups. Mitophagy was altered in type 2 diabetic patients, evident in a decrease in the protein levels of PINK1 and Parkin in parallel to that of the mitochondrial biogenesis protein PGC1α, both of which effects were reversed by metformin. Analysis of AMPK phosphorylation revealed that its activation was decreased in the PBMCs of type 2 diabetic patients, an effect which was reversed, once again, by metformin. In addition, there was an increase in the serum levels of TNFα and IL-6 in type 2 diabetic patients and this was reversed with metformin treatment. These results demonstrate that metformin improves mitochondrial function, restores the levels of ETC complexes, and enhances AMPK activation and mitophagy, suggesting beneficial clinical implications in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo
7.
Biomedicines ; 10(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203639

RESUMO

Obesity is characterized by low-grade chronic inflammation, metabolic overload, and impaired endothelial and cardiovascular function. Roux-en-Y gastric bypass (RYGB) results in amelioration of the pro-oxidant status of leukocytes and the metabolic profile. Nevertheless, little is known about the precise mechanism that drives systemic and metabolic improvements following bariatric surgery. In this cohort study, we investigated the effect of RYGB on molecular pathways involving energy homeostasis in leukocytes in 43 obese subjects one year after surgery. In addition to clinical and biochemical parameters, we determined protein expression of systemic proinflammatory cytokines by Luminex®, different markers of inflammation, endoplasmic reticulum (ER) stress, autophagy/mitophagy by western blot, and mitochondrial membrane potential by fluorescence imaging. Bariatric surgery induced an improvement in metabolic outcomes that was accompanied by a systemic drop in hsCRP, IL6, and IL1ß levels, and a slowing down of intracellular inflammatory pathways in leukocytes (NF-κB and MCP-1), an increase in AMPK content, a reduction of ER stress (ATF6 and CHOP), augmented autophagy/mitophagy markers (Beclin 1, ATG5, LC3-I, LC3-II, NBR1, and PINK1), and a decrease of mitochondrial membrane potential. These findings shed light on the specific molecular mechanisms by which RYGB facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis as key mediators of these outcomes. In addition, since leukocytes are particularly exposed to physiological changes, they could be used in routine clinical practice as a good sensor of the whole body's responses.

8.
World J Mens Health ; 40(3): 399-411, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35021300

RESUMO

Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to ß-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.

9.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439476

RESUMO

Sodium-glucose co-transporter 2 inhibitors (iSGLT2) have been linked to cardiovascular risk reduction in patients with type 2 diabetes (T2D). However, their underlying molecular mechanisms remain unclear. This study aimed to evaluate the effects of empagliflozin, a novel potent and selective iSGLT-2, on anthropometric and endocrine parameters, leukocyte-endothelium interactions, adhesion molecules, ROS production, and NFkB-p65 transcription factor expression. According to standard clinical protocols, sixteen T2D patients receiving 10 mg/day of empagliflozin were followed-up for 24 weeks. Anthropometric and analytical measurements were performed at baseline, 12 weeks, and 24 weeks. Interactions between polymorphonuclear leukocytes and human umbilical vein endothelial cells (HUVECs), serum levels of adhesion molecules (P-Selectin, VCAM-1 and ICAM-1) and pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6), mitochondrial ROS levels, antioxidant enzymes (SOD1 and GPX1), and NFkB-p65 were measured. We observed a decrease in body weight, BMI, and HbA1C levels from 12 weeks of treatment, which became more pronounced at 24 weeks and was accompanied by a significant reduction in waist circumference and glucose. Leukocyte-endothelium interactions were reduced due to an enhancement in the leukocyte rolling velocity from 12 weeks onwards, together with a significant decrease in leukocyte rolling flux and adhesion at 24 weeks. Accordingly, a significant decrease in ICAM-1 levels, mitochondrial ROS levels, and IL-6 and NFkB-p65 expression was observed, as well as an increase in SOD1. This pilot study provides evidence of the anti-inflammatory and antioxidant properties of empagliflozin treatment in humans, properties which may underlie its beneficial cardiovascular effects.

10.
Antioxidants (Basel) ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069422

RESUMO

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing ß-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19-24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.

11.
Biomedicines ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801145

RESUMO

Obese individuals without metabolic comorbidities are categorized as metabolically healthy obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy obesity (MUO). We analysed 3536 serum miRNAs in 20 middle-aged obese individuals: 10 MHO and 10 MUO. A total of 159 miRNAs were differentially expressed, of which, 72 miRNAs (45.2%) were higher and 87 miRNAs (54.7%) were lower in the MUO group. In addition, miRNAs related to insulin signalling and lipid metabolism pathways were upregulated in the MUO group. Among these miRNAs, hsa-miR-6796-5p and hsa-miR-4697-3p, which regulate oxidative stress, showed significant correlations with glucose, triglycerides, HbA1c and HDLc. Our results provide evidence of a pattern of differentially expressed miRNAs in obesity according to MetS, and identify those related to insulin resistance and lipid metabolism pathways.

12.
Antioxid Redox Signal ; 35(5): 377-385, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33559513

RESUMO

Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which mitochondrial dysfunction is one of the main players. Thus, our first aim was to describe the effect of metformin on mitochondrial function in an outpatient population with T2D. For analyzing this hypothesis, we performed a preliminary cross-sectional study complying with the STROBE requirements. We studied leukocytes from 139 healthy controls, 39 T2D patients without metformin treatment, and 81 T2D patients who had been on said treatment for at least 1 year. Leukocytes from T2D patients displayed higher total and mitochondrial reactive oxygen species levels, lower mitochondrial membrane potential, and lower oxygen consumption. Moreover, their mitochondria expressed lower mRNA and protein levels of fusion proteins mitofusin-1 (MFN1), mitofusin-2 (MFN2), and optic atrophy 1 (OPA1), and higher protein and gene expression levels of mitochondrial fission protein 1 (FIS1) and dynamin-related protein 1 (DRP-1). In addition, we observed enhanced leukocyte/endothelial interactions in T2D patients. Metformin reversed most of these effects, ameliorating mitochondrial function and dynamics, and reducing the leukocyte/endothelial interactions observed in T2D patients. These results raise the question of whether metformin tackles T2D by improving mitochondrial dysfunction and regulating mitochondrial dynamics. Furthermore, it would seem that metformin modulates the alteration of interactions between leukocytes and the endothelium, a subclinical marker of early atherosclerosis. Antioxid. Redox Signal. 35, 377-385.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
13.
Fertil Steril ; 115(2): 483-489, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33032814

RESUMO

OBJECTIVE: To evaluate the effect of testosterone treatment on metabolic and inflammation parameters and leukocyte-endothelium interactions in transgender men (TGM). DESIGN: Prospective observational study. SETTING: University hospital. PATIENT(S): One hundred fifty-seven TGM. INTERVENTION(S): Administration of testosterone undecanoate (1,000 mg, intramuscular) every 12 weeks. MAIN OUTCOME MEASURE(S): Endocrine parameters, adhesion molecules (vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, and E-selectin), proinflammatory cytokines interleukin-6, and tumor necrosis factor alpha were evaluated in serum before and after treatment using Luminex's xMAP technology. In addition, interactions between human umbilical vein endothelial cells and polymorphonuclear leukocytes were assessed by flow chamber microscopy. RESULT(S): Testosterone treatment led to an increase in leukocyte-endothelium interactions due to an increase in polymorphonuclear leukocytes rolling and adhesion and decreased rolling velocity. It also boosted levels of vascular cell adhesion molecule-1, E-selectin, interleukin-6, and tumor necrosis factor alpha. As expected, testosterone also produced a significant increase in free androgenic index, androstenedione, total testosterone, and atherogenic index of plasma and a decrease in sex hormone-binding globulin and high-density lipoprotein cholesterol. CONCLUSION(S): Treatment of TGM with testosterone induces an increase in leukocyte-endothelium interactions and adhesion molecules and proinflammatory cytokines. These effects are a reason to monitor cardiovascular risk in these patients.


Assuntos
Androgênios/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Testosterona/análogos & derivados , Pessoas Transgênero , Adulto , Androgênios/administração & dosagem , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/agonistas , Injeções Subcutâneas , Leucócitos/metabolismo , Masculino , Estudos Prospectivos , Testosterona/administração & dosagem , Testosterona/efeitos adversos , Adulto Jovem
14.
Antioxidants (Basel) ; 9(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322742

RESUMO

Obesity and its related disorders, such as diabetes and cardiovascular risk, represent an emerging global health issue. Even though genetic factors seem to be the primary actors in the development and progression of these diseases, dietary choices also appear to be of crucial importance. A healthy diet combined with physical activity have been shown to ameliorate glycaemic levels and insulin sensitivity, reduce body weight and the risk of chronic diseases, and contribute to an overall improvement in quality of life. Among nutrients, phytosterols have become the focus of growing attention as novel functional foods in the management of metabolic disorders. Phytosterols are natural plant compounds belonging to the triterpene family and are structurally similar to cholesterol. They are known for their cholesterol-lowering effects, anti-inflammatory and antioxidant properties, and the benefits they offer to the immune system. The present review aims to provide an overview of these bioactive compounds and their therapeutic potential in the fields of obesity and metabolic disorders, with special attention given to oxidative stress, inflammatory status, and gut dysbiosis, all common features of the aforementioned diseases.

16.
Antioxidants (Basel) ; 9(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967076

RESUMO

Obesity is a low-grade inflammatory condition affecting a range of individuals, from metabolically healthy obese (MHO) subjects to type 2 diabetes (T2D) patients. Metformin has been shown to display anti-inflammatory properties, though the underlying molecular mechanisms are unclear. To study whether the effects of metformin are mediated by changes in the inflammasome complex and autophagy in visceral adipose tissue (VAT) of obese patients, a biopsy of VAT was obtained from a total of 68 obese patients undergoing gastric bypass surgery. The patients were clustered into two groups: MHO patients and T2D patients treated with metformin. Patients treated with metformin showed decreased levels of all analyzed serum pro-inflammatory markers (TNFα, IL6, IL1ß and MCP1) and a downwards trend in IL18 levels associated with a lower production of oxidative stress markers in leukocytes (mitochondrial ROS and myeloperoxidase (MPO)). A reduction in protein levels of MCP1, NFκB, NLRP3, ASC, ATG5, Beclin1 and CHOP and an increase in p62 were also observed in the VAT of the diabetic group. This downregulation of both the NLRP3 inflammasome and autophagy in VAT may be associated with the improved inflammatory profile and leukocyte homeostasis seen in obese T2D patients treated with metformin with respect to MHO subjects and endorses the cardiometabolic protective effect of this drug.

17.
Antioxidants (Basel) ; 9(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927712

RESUMO

The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and metabolism. Moreover, microbiota metabolites seem to interfere with mitochondrial oxidative/nitrosative stress and autophagosome formation, thus regulating the activation of the inflammasome and the production of inflammatory cytokines, key players in chronic metabolic disorders. This review focuses on the association between intestinal microbiota and mitochondrial function and examines the mechanisms that may be the key to their use as potential therapeutic strategies in obesity and T2D management.

18.
Antioxidants (Basel) ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796678

RESUMO

Little is known about the mechanisms underlying the cardioprotective effect of Roux en-Y gastric bypass (RYGB) surgery. Therefore, the aim of the present study was to investigate whether weight loss associated with RYGB improves the oxidative status of leukocytes and ameliorates subclinical atherosclerotic markers. This is an interventional study of 57 obese subjects who underwent RYGB surgery. We determined biochemical parameters and qualitative analysis of cholesterol, leukocyte and systemic oxidative stress markers -superoxide production, glutathione peroxidase 1 (GPX1), superoxide dismutase (SOD) activity and protein carbonylation-, soluble cellular adhesion molecules -sICAM-1 and sP-selectin-, myeloperoxidase (MPO) and leukocyte-endothelium cell interactions-rolling flux, velocity and adhesion. RYGB induced an improvement in metabolic parameters, including hsCRP and leukocyte count (p < 0.001, for both). This was associated with an amelioration in oxidative stress, since superoxide production and protein carbonylation were reduced (p < 0.05 and p < 0.01, respectively) and antioxidant systems were enhanced (GPX1; p < 0.05 and SOD; p < 0.01). In addition, a significant reduction of the following parameters was observed one year after RYGB: MPO and sICAM (p < 0.05, for both), sPselectin and pattern B of LDL particles (p < 0.001, for both), and rolling flux and adhesion of leukocytes (p < 0.05 and p < 0.01, respectively). Our results suggest that patients undergoing RYGB benefit from an amelioration of the prooxidant status of leukocytes, metabolic outcomes, and subclinical markers of atherosclerosis.

19.
J Clin Med ; 9(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764458

RESUMO

Glycated hemoglobin monitorization could be a tool for maintaining type 2 diabetes (T2D) under control and delaying the appearance of cardiovascular events. This cross-sectional study was designed to assess the role of glycemic control in modulating early-stage markers of cardiovascular complications. One hundred and eight healthy controls and 161 type 2 diabetic patients were recruited and distributed according to their glycemic control, setting the threshold at 6.5% (good control). Biochemical and anthropometrical parameters were registered during the initial visit, and peripheral blood was extracted to obtain polymorphonuclear cells and analyze inflammatory markers, adhesion molecules, leukocyte-endothelium interactions, and carotid intima-media thickness. Correlations between these parameters were explored. We found that inflammatory markers and adhesion molecules were augmented in type 2 diabetic subjects with poor glycemic control. Polymorphonuclear leukocytes interacted more with the endothelium in the diabetic population, and even more significantly in the poorly controlled subjects. In parallel, carotid intima-media thickness was also increased in the diabetic population, and the difference was greater among poorly controlled subjects. Finally, correlation measurement revealed that carotid intima-media thickness was related to glycemic control and lipid metabolism in diabetic patients. Our results suggest that glycemic control delays the onset of cardiovascular comorbidities in diabetic subjects.

20.
J Clin Med ; 9(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635585

RESUMO

AIM: The primary objective of this pilot study was to evaluate the effect of non-surgical periodontal treatment. The secondary aim was to evaluate the effect of dietary therapy on both parameters of oxidative stress in leukocytes and leukocyte-endothelial cell interactions in an obese population. METHODS: This was a pilot study with a before-and-after design. Forty-nine obese subjects with periodontitis were randomized by means of the minimization method and assigned to one of two groups, one of which underwent dietary therapy while the other did not. All the subjects underwent non-surgical periodontal treatment. We determined periodontal, inflammatory and oxidative stress parameters-total reactive oxygen species (ROS), superoxide production, intracellular Ca2+, mitochondrial membrane potential and superoxide dismutase (SOD) activity. We also evaluated interactions between leukocytes and endothelium cells-velocity, rolling flux and adhesion-at baseline and 12 weeks after intervention. RESULTS: Periodontal treatment improved the periodontal health of all the patients, with a reduction in serum retinol-binding protein 4 (RBP4), total superoxide production and cytosolic Ca2+ in leukocytes. In the patients undergoing dietary therapy, there were less leukocyte adhesion to the endothelium, an effect that was accompanied by a decrease in TNFα, P-selectin and total ROS and an increase in SOD activity. CONCLUSIONS: Whereas non-surgical periodontal treatment induces an improvement in leukocyte homeostasis, dietary therapy as an adjuvant reduces systemic inflammation and increases antioxidant status which, in turn, modulates leukocyte-endothelium dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...