Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681778

RESUMO

The bacterial enzyme asparaginase is the main treatment option for acute lymphoblastic leukemia. However, it causes side effects, such as immunological reactions, and presents undesirable glutaminase activity. As an alternative, we have been studying asparaginase II from Saccharomyces cerevisiae, coded by ASP3 gene, which was cloned and expressed in Pichia pastoris. The recombinant asparaginase (ASP) presented antileukemic activity and a glutaminase activity 100 times lower in comparison to its asparaginase activity. In this work, we describe the development of a delivery system for ASP via its covalent attachment to functionalized polyethylene glycol (PEG) polymer chains in the outer surface of liposomes (ASP-enzymosomes). This new delivery system demonstrated antiproliferative activity against K562 (chronic myeloid leukemia) and Jurkat (acute lymphocytic leukemia) cell lines similar to that of ASP. The antiproliferative response of the ASP-enzymosomes against the Jurkat cells suggests equivalence to that of the free Escherichia coli commercial asparaginase (Aginasa®). Moreover, the ASP-enzymosomes were stable at 4 °C with no significant loss of activity within 4 days and retained 82% activity up to 37 days. Therefore, ASP-enzymosomes are a promising antileukemic drug.


Assuntos
Antineoplásicos/química , Asparaginase/química , Leucemia/tratamento farmacológico , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/farmacologia , Composição de Medicamentos/métodos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células K562 , Leucemia/patologia , Lipossomos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Células Tumorais Cultivadas
2.
J Proteomics ; 151: 204-213, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27216643

RESUMO

DM64 is a glycosylated protein with antivenom activity isolated from the serum of the opossum Didelphis aurita. It binds non-covalently to myotoxins I (Asp49) and II (Lys49) from Bothrops asper venom and inhibits their myotoxic effect. In this study, an affinity column with immobilized DM64 as bait was used to fish potential target toxins. All ten isolated myotoxins tested were able to effectively bind to the DM64 column. To better access the specificity of the inhibitor, crude venoms from Bothrops (8 species), Crotalus (2 species) and Naja naja atra were submitted to the affinity purification. Venom fractions bound and nonbound to the DM64 column were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Although venom fractions bound to the column were mainly composed of basic PLA2, a few spots corresponding to acidic PLA2 were also observed. Some unexpected protein spots were also identified: C-type lectins and CRISP may represent putative new targets for DM64, whereas the presence of serine peptidases in the venom bound fraction is likely a consequence of nonspecific binding to the column matrix. The present results contribute to better delineate the inhibitory potential of DM64, providing a framework for the development of more specific antivenom therapies. BIOLOGICAL SIGNIFICANCE: Local tissue damage induced by myotoxic PLA2 remains a serious consequence of snake envenomation, since it is only partially neutralized by traditional antivenom serotherapy. Myotoxin inhibition by highly specific molecules offers great promise in the treatment of snakebites, a health problem largely neglected by governments and pharmaceutical industries. Bioactive compounds such as DM64 can represent a valuable source of scaffolds for drug development in this area. The present study has systematically profiled the binding specificity of DM64 toward a variety of snake venom toxin classes and therefore can lead to a better understanding of the structure-function relationship of this important antivenom protein.


Assuntos
Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/antagonistas & inibidores , Animais , Proteínas Sanguíneas/uso terapêutico , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Fosfolipases A/análise , Fosfolipases A/antagonistas & inibidores , Ligação Proteica , Proteômica/métodos , Especificidade da Espécie , Espectrometria de Massas em Tandem , Toxinas Biológicas/análise , Toxinas Biológicas/antagonistas & inibidores
3.
J Proteome Res ; 11(2): 1152-62, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22168127

RESUMO

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Assuntos
Colubridae/metabolismo , Metaloproteinases da Matriz/química , Proteoma/química , Proteômica/métodos , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Metaloproteinases da Matriz/classificação , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Proteoma/classificação , Alinhamento de Sequência , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/classificação , Venenos de Serpentes/metabolismo , Transcriptoma
4.
Biochim Biophys Acta ; 1794(10): 1379-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19332153

RESUMO

We have investigated the folding of DM43, a homodimeric metalloproteinase inhibitor isolated from the serum of the South American opossum Didelphis marsupialis. Denaturation of the protein induced by GdnHCl (guanidine hydrochloride) was monitored by extrinsic and intrinsic fluorescence spectroscopy. While the equilibrium (un)folding of DM43 followed by tryptophan fluorescence was well described by a cooperative two-state transition, bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid) fluorescence measurements revealed an intensity maximum at the midpoint of the unfolding transition (2 M GdnHCl), indicating a partially folded intermediate state. We further investigated the DM43 intermediate stabilized at 2 M GdnHCl using size exclusion chromatography. This analysis revealed that the folding intermediate can be best described as partially folded DM43 monomers. Thermodynamic analysis of the GdnHCl-induced denaturation of DM43 revealed Gibbs free-energy changes of 13.57 kcal/mol for dimer dissociation and 1.86 kcal/mol for monomer unfolding, pointing to a critical role of dimerization as a determinant of the structure and stability of this protein. In addition, by using hydrostatic pressure (up to 3.5 kbar) we were able to stabilize partially folded states different from those stabilized in the presence of GdnHCl. Taken together, these results indicate that the conformational plasticity of DM43 could provide this protein with the ability to adapt its conformation to a variety of different environments and biological partners during its biological lifetime.


Assuntos
Proteínas Sanguíneas/química , Didelphis/sangue , Metaloproteases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/genética , Didelphis/genética , Guanidina , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Venenos de Serpentes/enzimologia , Espectrometria de Fluorescência , Termodinâmica
5.
J Proteome Res ; 8(5): 2351-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19267469

RESUMO

Snake venoms are mixtures of proteins and peptides with different biological activities, many of which are very toxic. Several animals, including the opossum Didelphis aurita, are resistant to snake venoms due to the presence of neutralizing factors in their blood. An antihemorrhagic protein named DM43 was isolated from opossum serum. It inhibits snake venom metalloproteinases through noncovalent complex formation with these enzymes. In this study, we have used DM43 and proteomic techniques to explore snake venom subproteomes. Four crotalid venoms were chromatographed through an affinity column containing immobilized DM43. Bound fractions were analyzed by one- and two-dimensional gel electrophoresis, followed by identification by MALDI-TOF/TOF mass spectrometry. With this approach, we could easily visualize and compare the metalloproteinase compositions of Bothrops atrox, Bothrops jararaca, Bothrops insularis, and Crotalus atrox snake venoms. The important contribution of proteolytic processing to the complexity of this particular subproteome was demonstrated. Fractions not bound to DM43 column were similarly analyzed and were composed mainly of serine proteinases, C-type lectins, C-type lectin-like proteins, l-amino acid oxidases, nerve growth factor, cysteine-rich secretory protein, a few metalloproteinases (and their fragments), and some unidentified spots. Although very few toxin families were represented in the crotalid venoms analyzed, the number of protein spots detected was in the hundreds, indicating an important protein variability in these natural secretions. DM43 affinity chromatography and associated proteomic techniques proved to be useful tools to separate and identify proteins from snake venoms, contributing to a better comprehension of venom heterogeneity.


Assuntos
Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/análise , Proteoma/análise , Proteômica/métodos , Animais , Proteínas Sanguíneas/farmacologia , Bothrops/classificação , Bothrops/metabolismo , Cromatografia de Afinidade , Venenos de Crotalídeos/metabolismo , Eletroforese em Gel Bidimensional , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Proteoma/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Proteomics ; 72(2): 241-55, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19211044

RESUMO

A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies.


Assuntos
Proteômica/métodos , Venenos de Serpentes/análise , Sequência de Aminoácidos , Animais , Bothrops , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional , Lectinas/química , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/química , Fosfolipases/análise , Processamento de Proteína Pós-Traducional , Proteínas/análise , Transcrição Gênica
7.
Proteomics ; 8(8): 1631-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18340630

RESUMO

This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatography in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer. The 583 identified proteins were sorted into functional categories and used to describe potential metabolic pathways for nucleotides, amino acids, carbohydrates, lipids, cofactors and energy production, according to the Enzyme Commission of Enzyme Nomenclature (EC) and Kyoto Encyclopedia of genes and genomes (KEGG) databases. The identification of such proteins and their possible insertion in conserved biochemical routes will allow comparisons between G. diazotrophicus and other bacterial species. Furthermore, the 88 proteins classified as conserved unknown or unknown constitute a potential target for functional genomic studies, aiming at the understanding of protein function and regulation of gene expression. The knowledge of metabolic fundamentals and coordination of these actions are crucial for the rational, safe and sustainable interference on crops. The entire dataset, including peptide sequence information, is available as Supporting Information and is the major contribution of this work.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/metabolismo , Proteoma/análise , Saccharum/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Gluconacetobacter/crescimento & desenvolvimento , Saccharum/microbiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Eur J Biochem ; 269(24): 6052-62, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12473101

RESUMO

Bothrops snake venoms are known to induce local tissue damage such as hemorrhage and myonecrosis. The opossum Didelphis marsupialis is resistant to these snake venoms and has natural venom inhibitors in its plasma. The aim of this work was to clone and study the chemical, physicochemical and biological properties of DM64, an antimyotoxic protein from opossum serum. DM64 is an acidic protein showing 15% glycosylation and with a molecular mass of 63 659 Da when analysed by MALDI-TOF MS. It was cloned and the amino acid sequence was found to be homologous to DM43, a metalloproteinase inhibitor from D. marsupialis serum, and to human alpha1B-glycoprotein, indicating the presence of five immunoglobulin-like domains. DM64 neutralized both the in vivo myotoxicity and the in vitro cytotoxicity of myotoxins I (mt-I/Asp49) and II (mt-II/Lys49) from Bothrops asper venom. The inhibitor formed noncovalent complexes with both toxins, but did not inhibit the PLA2 activity of mt-I. Accordingly, DM64 did not neutralize the anticoagulant effect of mt-I nor its intracerebroventricular lethality, effects that depend on its enzymatic activity, and which demonstrate the dissociation between the catalytic and toxic activities of this Asp49 myotoxic PLA2. Furthermore, despite its similarity with metalloproteinase inhibitors, DM64 presented no antihemorrhagic activity against Bothrops jararaca or Bothrops asper crude venoms, and did not inhibit the fibrinogenolytic activity of jararhagin or bothrolysin. This is the first report of a myotoxin inhibitor with an immunoglobulin-like structure isolated and characterized from animal blood.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/isolamento & purificação , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/enzimologia , Glicoproteínas , Imunoglobulinas , Metaloendopeptidases/antagonistas & inibidores , Inibidores de Proteases/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Bothrops , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Biblioteca Gênica , Humanos , Hidrólise , Focalização Isoelétrica , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Gambás , Fosfolipases A/metabolismo , Fosfolipases A2 , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...