Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972944

RESUMO

Extracellular vesicles (EVs) are known as molecular carriers involved in cell communication and the regulation of (patho)physiological processes. miRNAs and growth factors are the main contents of EVs which make them a good candidate for the treatment of diseases caused by ischemia, but the low production of EVs by a cell producer and a significant variation of the molecular contents in EVs according to the cell source are the main limitations of their widespread use. Here, we show how to improve the therapeutic properties of mesenchymal stromal cell (MSC)-derived EVs (MSC-EVs) by modifying MSCs to enrich these EVs with specific angiomiRs (miR-135b or miR-210) using lentiviral vectors carrying miR-135b or miR-210. MSCs were obtained from the mouse bone marrow and transduced with a corresponding lentivector to overexpress miR-135b or miR-210. The EVs were then isolated by ultracentrifugation and characterized using a flow cytometer and a nanoparticle tracking analyzer. The levels of 20 genes in the MSCs and 12 microRNAs in both MSCs and EVs were assessed by RT‒qPCR. The proangiogenic activity of EVs was subsequently assessed in human umbilical vein endothelial cells (HUVECs). The results confirmed the overexpression of the respective microRNA in modified MSCs. Moreover, miR-135b overexpression upregulated miR-210-5p and follistatin, whereas the overexpression of miR-210 downregulated miR-221 and upregulated miR-296. The tube formation assay showed that EVs from MSCs overexpressing miR-210-5p (EVmiR210) significantly promoted tubular structure formation in HUVECs. A significant increase in angiogenic proteins (PGF, endothelin 1, and artemin) and genes (VEGF, activin A, and IGFBP1) in HUVECs treated with VEmiR210 justifies the better tubular structure formation of these cells compared with that of EVmiR135b-treated HUVECs, which showed upregulated expression of only artemin. Collectively, our results show that the EV cargo can be modified by lentiviral vectors to enrich specific miRNAs to achieve a specific angiogenic potential.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Indutores da Angiogênese/metabolismo , Animais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Front Microbiol ; 10: 2008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551957

RESUMO

Extracellular vesicles (EVs) has been considered an alternative process for intercellular communication. EVs release by filamentous fungi and the role of vesicular secretion during fungus-host cells interaction remain unknown. Here, we identified the secretion of EVs from the pathogenic filamentous fungus, Aspergillus fumigatus. Analysis of the structure of EVs demonstrated that A. fumigatus produces round shaped bilayer structures ranging from 100 to 200 nm size, containing ergosterol and a myriad of proteins involved in REDOX, cell wall remodeling and metabolic functions of the fungus. We demonstrated that macrophages can phagocytose A. fumigatus EVs. Phagocytic cells, stimulated with EVs, increased fungal clearance after A. fumigatus conidia challenge. EVs were also able to induce the production of TNF-α and CCL2 by macrophages and a synergistic effect was observed in the production of these mediators when the cells were challenged with the conidia. In bone marrow-derived neutrophils (BMDN) treated with EVs, there was enhancement of the production of TNF-α and IL-1ß in response to conidia. Together, our results demonstrate, for the first time, that A. fumigatus produces EVs containing a diverse set of proteins involved in fungal physiology and virulence. Moreover, EVs are biologically active and stimulate production of inflammatory mediators and fungal clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...