Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 79(9): 5743-51, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827189

RESUMO

Key elements of the conformational switch model describing regulation of alfalfa mosaic virus (AMV) replication (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999) have been tested using biochemical assays and functional studies in nontransgenic protoplasts. Although comparative sequence analysis suggests that the 3' untranslated regions of AMV and ilarvirus RNAs have the potential to fold into pseudoknots, we were unable to confirm that a proposed pseudoknot forms or has a functional role in regulating coat protein-RNA binding or viral RNA replication. Published work has suggested that the pseudoknot is part of a tRNA-like structure (TLS); however, we argue that the canonical sequence and functional features that define the TLS are absent. We suggest here that the absence of the TLS correlates directly with the distinctive requirement for coat protein to activate replication in these viruses. Experimental data are evidence that elevated magnesium concentrations proposed to stabilize the pseudoknot structure do not block coat protein binding. Additionally, covarying nucleotide changes proposed to reestablish pseudoknot pairings do not rescue replication. Furthermore, as described in the accompanying paper (L. M. Guogas, S. M. Laforest, and L. Gehrke, J. Virol. 79:5752-5761, 2005), coat protein is not, by definition, inhibitory to minus-strand RNA synthesis. Rather, the activation of viral RNA replication by coat protein is shown to be concentration dependent. We describe the 3' organization model as an alternate model of AMV replication that offers an improved fit to the available data.


Assuntos
Vírus do Mosaico da Alfafa/metabolismo , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Vírus do Mosaico da Alfafa/genética , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Dados de Sequência Molecular , RNA Viral/biossíntese , RNA Viral/química , Replicação Viral
2.
J Virol ; 78(15): 8036-46, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15254175

RESUMO

The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity.


Assuntos
Vírus do Mosaico da Alfafa/genética , Proteínas do Capsídeo/metabolismo , RNA Viral/biossíntese , Regiões 3' não Traduzidas/química , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA