Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 604(7904): 111-119, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355018

RESUMO

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Assuntos
Linhagem da Célula , Pulmão , Células-Tronco , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Conectoma , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pneumopatias , Camundongos , Organoides , Primatas , Regeneração , Análise de Célula Única , Células-Tronco/citologia
2.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35316222

RESUMO

Pericyte-mediated capillary constriction decreases cerebral blood flow in stroke after an occluded artery is unblocked. The determinants of pericyte tone are poorly understood. We show that a small rise in cytoplasmic Ca2+ concentration ([Ca2+]i) in pericytes activated chloride efflux through the Ca2+-gated anion channel TMEM16A, thus depolarizing the cell and opening voltage-gated calcium channels. This mechanism strongly amplified the pericyte [Ca2+]i rise and capillary constriction evoked by contractile agonists and ischemia. In a rodent stroke model, TMEM16A inhibition slowed the ischemia-evoked pericyte [Ca2+]i rise, capillary constriction, and pericyte death; reduced neutrophil stalling; and improved cerebrovascular reperfusion. Genetic analysis implicated altered TMEM16A expression in poor patient recovery from ischemic stroke. Thus, pericyte TMEM16A is a crucial regulator of cerebral capillary function and a potential therapeutic target for stroke and possibly other disorders of impaired microvascular flow, such as Alzheimer's disease and vascular dementia.


Assuntos
Pericitos , Acidente Vascular Cerebral , Cálcio/metabolismo , Circulação Cerebrovascular/genética , Humanos , Isquemia/metabolismo , Pericitos/metabolismo , Acidente Vascular Cerebral/metabolismo
3.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433575

RESUMO

The mouse vomeronasal system controls several social behaviors. Pheromones and other social cues are detected by sensory neurons in the vomeronasal organ (VNO). Stimuli activate a transduction cascade that leads to membrane potential depolarization, increase in cytosolic Ca2+ level, and increased firing. The Ca2+-activated chloride channels TMEM16A and TMEM16B are co-expressed within microvilli of vomeronasal neurons, but their physiological role remains elusive. Here, we investigate the contribution of each of these channels to vomeronasal neuron firing activity by comparing wild-type (WT) and knock-out (KO) mice. Performing loose-patch recordings from neurons in acute VNO slices, we show that spontaneous activity is modified by Tmem16a KO, indicating that TMEM16A, but not TMEM16B, is active under basal conditions. Upon exposure to diluted urine, a rich source of mouse pheromones, we observe significant changes in activity. Vomeronasal sensory neurons (VSNs) from Tmem16a cKO and Tmem16b KO mice show shorter interspike intervals (ISIs) compared with WT mice, indicating that both TMEM16A and TMEM16B modulate the firing pattern of pheromone-evoked activity in VSNs.


Assuntos
Feromônios , Órgão Vomeronasal , Potenciais de Ação , Animais , Camundongos , Camundongos Knockout , Células Receptoras Sensoriais
4.
Cell Rep ; 33(13): 108553, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378665

RESUMO

There is an increasing appreciation for the heterogeneity of myeloid lineages in the lung, but relatively little is known about populations specifically associated with the conducting airways. We use single-cell RNA sequencing, flow cytometry, and immunofluorescence to characterize myeloid cells of the mouse trachea during homeostasis and epithelial injury/repair. We identify submucosal macrophages, similar to lung interstitial macrophages, and intraepithelial macrophages. Following injury, there are early increases in neutrophils and submucosal macrophages, including M2-like macrophages. Intraepithelial macrophages are lost after injury and later restored by CCR2+ monocytes. We show that repair of the tracheal epithelium is impaired in Ccr2-deficient mice. Mast cells and group 2 innate lymphoid cells are sources of interleukin-13 (IL-13) that polarize macrophages and directly influence basal cell behaviors. Their proximity to the airway epithelium establishes these myeloid populations as potential therapeutic targets for airway disease.


Assuntos
Células Epiteliais/metabolismo , Epitélio/metabolismo , Homeostase , Macrófagos Alveolares/fisiologia , Células Mieloides/fisiologia , Receptores CCR2/metabolismo , Traqueia/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Epitélio/lesões , Feminino , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Monócitos/metabolismo , Polidocanol , Receptores CCR2/genética , Regeneração , Análise de Sequência de RNA , Análise de Célula Única , Traqueia/lesões
5.
Blood Adv ; 4(24): 6204-6217, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33351116

RESUMO

Megakaryocytes (MKs) are responsible for platelet biogenesis, which is believed to occur canonically in adult bone marrow (BM) and in the fetal liver during development. However, emerging evidence highlights the lung as a previously underappreciated residence for MKs that may contribute significantly to circulating platelet mass. Although a diversity of cells specific to the BM is known to promote the maturation and trafficking of MKs, little investigation into the impact of the lung niche on the development and function of MKs has been done. Here, we describe the application of single-cell RNA sequencing, coupled with histological, ploidy, and flow cytometric analyses, to profile primary MKs derived from syngeneic mouse lung and hematopoietic tissues. Transcriptional profiling demonstrated that lung MKs have a unique signature distinct from their hematopoietic counterparts, with lung MKs displaying enrichment for maturation markers, potentially indicating a propensity for more efficient platelet production. Reciprocally, fetal lung MKs also showed the robust expression of cytokines and growth factors that are known to promote lung development. Lastly, lung MKs possess an enrichment profile skewed toward roles in immunity and inflammation. These findings highlight the existence of a lung-specific MK phenotype and support the notion that the lung plays an independent role in the development and functional maturation of MKs. The immune phenotype displayed by lung MKs also introduces their potential role in microbial surveillance and antigen presentation.


Assuntos
Megacariócitos , Trombopoese , Animais , Citometria de Fluxo , Pulmão , Camundongos , Fenótipo
6.
Cell Stem Cell ; 26(4): 482-502, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243808

RESUMO

The respiratory system, which includes the trachea, airways, and distal alveoli, is a complex multi-cellular organ that intimately links with the cardiovascular system to accomplish gas exchange. In this review and as members of the NIH/NHLBI-supported Progenitor Cell Translational Consortium, we discuss key aspects of lung repair and regeneration. We focus on the cellular compositions within functional niches, cell-cell signaling in homeostatic health, the responses to injury, and new methods to study lung repair and regeneration. We also provide future directions for an improved understanding of the cell biology of the respiratory system, as well as new therapeutic avenues.


Assuntos
Pulmão , Células-Tronco , Comunicação Celular , Alvéolos Pulmonares , Traqueia
7.
Methods Protoc ; 2(4)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581513

RESUMO

In this report, we describe methodologies for the isolation and culture of primary rhesus macaque tracheal basal cells, their cryopreservation, long term storage and differentiation. These are comparable to state-of-the-art protocols that have been developed for mouse and human airway basal cells. This method is based on the use of proprietary media, providing an easily reproducible and applicable protocol for usage in biosafety level 2 (BSL2) settings. Tracheas from rhesus macaques were isolated after animal euthanasia and subjected to enzymatic digestion overnight. Cells of the epithelial layer were scraped off of the trachea for cell culture. Twenty-four hours after plating basal cells had attached and nonadherent cells were removed. First passages of basal cells can be frozen for early passage storage in liquid nitrogen or propagated and differentiated on an air-liquid interface and in a tracheosphere assay up to passage seven. This protocol provides a platform for the analysis of basal cells from a close evolutionary relative to humans.

8.
J Gen Physiol ; 151(7): 954-966, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048412

RESUMO

Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.


Assuntos
Potenciais de Ação , Anoctamina-1/metabolismo , Mucosa Olfatória/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Olfatória/fisiologia , Receptores Purinérgicos/metabolismo
9.
J Gen Physiol ; 151(4): 532-554, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862712

RESUMO

Lymphatic collecting vessels exhibit spontaneous contractions with a pressure-dependent contraction frequency. The initiation of contraction has been proposed to be mediated by the activity of a Ca2+-activated Cl- channel (CaCC). Here, we show that the canonical CaCC Anoctamin 1 (Ano1, TMEM16a) plays an important role in lymphatic smooth muscle pacemaking. We find that isolated murine lymphatic muscle cells express Ano1, and demonstrate functional CaCC currents that can be inhibited by the Ano1 inhibitor benzbromarone. These currents are absent in lymphatic muscle cells from Cre transgenic mouse lines targeted for Ano1 genetic deletion in smooth muscle. We additionally show that loss of functional Ano1 in murine inguinal-axillary lymphatic vessels, whether through genetic manipulation or pharmacological inhibition, results in an impairment of the pressure-frequency relationship that is attributable to a hyperpolarized resting membrane potential and a significantly depressed diastolic depolarization rate preceding each action potential. These changes are accompanied by alterations in action potential shape and duration, and a reduced duration but increased amplitude of the action potential-induced global "Ca2+ flashes" that precede lymphatic contractions. These findings suggest that an excitatory Cl- current provided by Ano1 is critical for mediating the pressure-sensitive contractile response and is a major component of the murine lymphatic action potential.


Assuntos
Anoctamina-1/metabolismo , Vasos Linfáticos/fisiologia , Animais , Anoctamina-1/genética , Benzobromarona/farmacologia , Cálcio/metabolismo , Regulação da Expressão Gênica , Vasos Linfáticos/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Pressão , Conformação Proteica , Uricosúricos/farmacologia
10.
J Physiol ; 596(9): 1549-1574, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29430647

RESUMO

KEY POINTS: Enteric neurotransmission is essential for gastrointestinal (GI) motility, although the cells and conductances responsible for post-junctional responses are controversial. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1), was expressed by intramuscular interstitial cells of Cajal (ICC-IM) in proximal stomach and not resolved in smooth muscle cells (SMCs). Cholinergic nerve fibres were closely apposed to ICC-IM. Conductances activated by cholinergic stimulation in isolated ICC-IM and SMCs were determined. A CaCC was activated by carbachol in ICC-IM and a non-selective cation conductance in SMCs. Responses to cholinergic nerve stimulation were studied. Excitatory junction potentials (EJPs) and mechanical responses were evoked in wild-type mice but absent or greatly reduced with knockout/down of Ano1. Drugs that block Ano1 inhibited the conductance activated by carbachol in ICC-IM and EJPs and mechanical responses in tissues. The data of the present study suggest that electrical and mechanical responses to cholinergic nerve stimulation are mediated by Ano1 expressed in ICC-IM and not SMCs. ABSTRACT: Enteric motor neurotransmission is essential for normal gastrointestinal (GI) motility. Controversy exists regarding the cells and ionic conductance(s) that mediate post-junctional neuroeffector responses to motor neurotransmitters. Isolated intramuscular ICC (ICC-IM) and smooth muscle cells (SMCs) from murine fundus muscles were used to determine the conductances activated by carbachol (CCh) in each cell type. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1) is expressed by ICC-IM but not resolved in SMCs, and CCh activated a Cl- conductance in ICC-IM and a non-selective cation conductance in SMCs. We also studied responses to nerve stimulation using electrical-field stimulation (EFS) of intact fundus muscles from wild-type and Ano1 knockout mice. EFS activated excitatory junction potentials (EJPs) in wild-type mice, although EJPs were absent in mice with congenital deactivation of Ano1 and greatly reduced in animals in which the CaCC-Ano1 was knocked down using Cre/loxP technology. Contractions to cholinergic nerve stimulation were also greatly reduced in Ano1 knockouts. SMCs cells also have receptors and ion channels activated by muscarinic agonists. Blocking acetylcholine esterase with neostigmine revealed a slow depolarization that developed after EJPs in wild-type mice. This depolarization was still apparent in mice with genetic deactivation of Ano1. Pharmacological blockers of Ano1 also inhibited EJPs and contractile responses to muscarinic stimulation in fundus muscles. The data of the present study are consistent with the hypothesis that ACh released from motor nerves binds muscarinic receptors on ICC-IM with preference and activates Ano1. If metabolism of acetylcholine is inhibited, ACh overflows and binds to extrajunctional receptors on SMCs, eliciting a slower depolarization response.


Assuntos
Acetilcolina/metabolismo , Células Intersticiais de Cajal/fisiologia , Miócitos de Músculo Liso/fisiologia , Estômago/fisiologia , Transmissão Sináptica , Animais , Anoctamina-1/fisiologia , Canais de Cloreto/fisiologia , Estimulação Elétrica , Fundo Gástrico/citologia , Fundo Gástrico/fisiologia , Células Intersticiais de Cajal/citologia , Camundongos , Camundongos Knockout , Contração Muscular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Estômago/citologia
11.
Sci Rep ; 7(1): 12397, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963502

RESUMO

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the secretory chloride/bicarbonate channel in airways and intestine that is activated through ATP binding and phosphorylation by protein kinase A, but fails to operate in cystic fibrosis (CF). TMEM16A (also known as anoctamin 1, ANO1) is thought to function as the Ca2+ activated secretory chloride channel independent of CFTR. Here we report that tissue specific knockout of the TMEM16A gene in mouse intestine and airways not only eliminates Ca2+-activated Cl- currents, but unexpectedly also abrogates CFTR-mediated Cl- secretion and completely abolishes cAMP-activated whole cell currents. The data demonstrate fundamentally new roles of TMEM16A in differentiated epithelial cells: TMEM16A provides a mechanism for enhanced ER Ca2+ store release, possibly engaging Store Operated cAMP Signaling (SOcAMPS) and activating Ca2+ regulated adenylyl cyclases. TMEM16A is shown to be essential for proper activation and membrane expression of CFTR. This intimate regulatory relationship is the cause for the functional overlap of CFTR and Ca2+-dependent chloride transport.


Assuntos
Anoctamina-1/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Anoctamina-1/genética , Transporte Biológico , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Camundongos Knockout , Proteínas de Neoplasias/genética
12.
Cell Stem Cell ; 21(1): 120-134.e7, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28506464

RESUMO

To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults.


Assuntos
Pulmão/fisiologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Pneumonectomia , Regeneração/imunologia , Células Th2/imunologia , Animais , Interleucina-13/genética , Interleucina-13/imunologia , Camundongos , Camundongos Knockout , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Regeneração/genética
13.
J Clin Invest ; 127(6): 2277-2294, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463226

RESUMO

It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Fator Nuclear 1 de Tireoide , Transcriptoma
15.
JCI Insight ; 1(14): e86704, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27699234

RESUMO

Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated ß-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.


Assuntos
Células Epiteliais Alveolares/citologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Telômero/patologia , Animais , Células Cultivadas , Células Epiteliais , Fibrose Pulmonar Idiopática , Camundongos , Encurtamento do Telômero
16.
J Urol ; 196(4): 1295-302, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27173853

RESUMO

PURPOSE: Lower urinary tract malformations are among the most common congenital anomalies in humans. Molecular genetic studies of mouse external genital development have begun to identify mechanisms that pattern the genital tubercle and orchestrate urethral tubulogenesis. The urethral plate epithelium is an endodermal signaling region that has an essential role in external genital development. However, little is known about the molecular identity of this cell population or the genes that regulate its activity. MATERIALS AND METHODS: We used microarray analysis to characterize differences in gene expression between urethral plate epithelium and surrounding tissue in mouse genital tubercles. In situ hybridizations were performed to map gene expression patterns and ToppCluster (https://toppcluster.cchmc.org/) was used to analyze gene associations. RESULTS: A total of 84 genes were enriched at least 20-fold in urethral plate epithelium relative to surrounding tissue. The majority of these genes were expressed throughout the urethral plate in males and females at embryonic day 12.5 when the urethral plate is known to signal. Functional analysis using ToppCluster revealed genetic pathways with known functions in other organ systems but unknown roles in external genital development. Additionally, a 3-dimensional molecular atlas of genes enriched in urethral plate epithelium was generated and deposited at the GUDMAP (GenitoUrinary Development Molecular Anatomy Project) website (http://gudmap.org/). CONCLUSIONS: We identified dozens of genes previously unknown to be expressed in urethral plate epithelium at a crucial developmental period. It provides a novel panel of genes for analysis in animal models and in humans with external genital anomalies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , RNA/genética , Uretra/embriologia , Urotélio/embriologia , Animais , Feminino , Proteínas Hedgehog/biossíntese , Hibridização In Situ , Masculino , Camundongos , Modelos Animais , Análise Serial de Proteínas , Transdução de Sinais , Uretra/metabolismo , Urotélio/metabolismo
17.
BMC Dev Biol ; 15: 32, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26376663

RESUMO

Recent studies have identified epithelial stem and progenitor cell populations of the lung. We are just beginning to understand the mechanisms that regulate their homeostatic, regenerative and maladaptive behaviors. Here, we discuss evidence of regulatory niches for epithelial stem cells of the lung.


Assuntos
Remodelação das Vias Aéreas , Pulmão/citologia , Nicho de Células-Tronco , Animais , Brônquios/citologia , Modelos Animais de Doenças , Fibrose/patologia , Humanos , Pulmão/patologia , Camundongos , Alvéolos Pulmonares/citologia
18.
PLoS One ; 10(6): e0129171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067252

RESUMO

TMEM16A/ANO1 is a calcium-activated chloride channel expressed in several types of epithelia and involved in various physiological processes, including proliferation and development. During mouse embryonic development, the expression of TMEM16A in the olfactory epithelium is dynamic. TMEM16A is expressed at the apical surface of the entire olfactory epithelium at embryonic day E12.5 while from E16.5 its expression is restricted to a region near the transition zone with the respiratory epithelium. To investigate whether TMEM16A plays a role in the development of the mouse olfactory epithelium, we obtained the first immunohistochemistry study comparing the morphological properties of the olfactory epithelium and nasal glands in TMEM16A-/- and TMEM16A+/+ littermate mice. A comparison between the expression of the olfactory marker protein and adenylyl cyclase III shows that genetic ablation of TMEM16A did not seem to affect the maturation of olfactory sensory neurons and their ciliary layer. As TMEM16A is expressed at the apical part of supporting cells and in their microvilli, we used ezrin and cytokeratin 8 as markers of microvilli and cell body of supporting cells, respectively, and found that morphology and development of supporting cells were similar in TMEM16A-/- and TMEM16A+/+ littermate mice. The average number of supporting cells, olfactory sensory neurons, horizontal and globose basal cells were not significantly different in the two types of mice. Moreover, we also observed that the morphology of Bowman's glands, nasal septal glands and lateral nasal glands did not change in the absence of TMEM16A. Our results indicate that the development of mouse olfactory epithelium and nasal glands does not seem to be affected by the genetic ablation of TMEM16A.


Assuntos
Canais de Cloreto/metabolismo , Mucosa Nasal/metabolismo , Mucosa Olfatória/metabolismo , Animais , Anoctamina-1 , Canais de Cloreto/deficiência , Canais de Cloreto/genética , Embrião de Mamíferos/metabolismo , Feminino , Imuno-Histoquímica , Queratina-8/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microvilosidades/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Gravidez
19.
Proc Natl Acad Sci U S A ; 112(8): 2575-80, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675481

RESUMO

The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca(2+) photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca(2+)-activated Cl(-) conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca(2+)-activated Cl(-) channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca(2+)-activated Cl(-) currents and action potential firing in SGNs. To determine whether Cl(-) ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl(-) concentration [Cl(-)]i in SGNs. Surprisingly, [Cl(-)]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl(-) channels in the developing neuron. The switch in [Cl(-)]i stems from delayed expression of the development of intracellular Cl(-) regulating mechanisms. Because the Cl(-) channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl(-)]i, and hence the equilibrium potential for Cl(-) (ECl), transforms pre- to posthearing phenotype.


Assuntos
Canais de Cloreto/metabolismo , Potenciais da Membrana , Neurônios/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anoctamina-1 , Anoctaminas , Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Feminino , Audição/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fenótipo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Simportadores/metabolismo , Cotransportadores de K e Cl-
20.
Pflugers Arch ; 467(6): 1203-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974903

RESUMO

Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.


Assuntos
Sinalização do Cálcio , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctamina-1 , Anoctaminas , Cálcio/metabolismo , Canais de Cloreto/genética , Camundongos , Especificidade de Órgãos , Proteínas de Transferência de Fosfolipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...