Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878055

RESUMO

OBJECTIVE: Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS: We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS: Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, ß peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative ß band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS: For this patient, an increase in ß band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38083418

RESUMO

Stereoelectroencephalography (SEEG) is a neurosurgical method to survey electrophysiological activity within the brain to treat disorders such as Epilepsy. In this stereotactic approach, leads are implanted through straight trajectories to survey both cortical and sub-cortical activity.Visualizing the recorded locations covering sulcal and gyral activity while staying true to the cortical architecture is challenging due to the folded, three-dimensional nature of the human cortex.To overcome this challenge, we developed a novel visualization concept, allowing investigators to dynamically morph between the subjects' cortical reconstruction and an inflated cortex representation. This inflated view, in which gyri and sulci are viewed on a smooth surface, allows better visualization of electrodes buried within the sulcus while staying true to the underlying cortical architecture.Clinical relevance- These visualization techniques might also help guide clinical decision-making when defining seizure onset zones or resections for patients undergoing SEEG monitoring for intractable epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Técnicas Estereotáxicas , Epilepsia/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Encéfalo , Eletrodos
3.
ArXiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798460

RESUMO

Stereoelectroencephalography (SEEG) is a neurosurgical method to survey electrophysiological activity within the brain to treat disorders such as Epilepsy. In this stereotactic approach, leads are implanted through straight trajectories to survey both cortical and sub-cortical activity. Visualizing the recorded locations covering sulcal and gyral activity while staying true to the cortical architecture is challenging due to the folded, three-dimensional nature of the human cortex. To overcome this challenge, we developed a novel visualization concept, allowing investigators to dynamically morph between the subjects' cortical reconstruction and an inflated cortex representation. This inflated view, in which gyri and sulci are viewed on a smooth surface, allows better visualization of electrodes buried within the sulcus while staying true to the underlying cortical architecture. Clinical relevance­: These visualization techniques might also help guide clinical decision-making when defining seizure onset zones or resections for patients undergoing SEEG monitoring for intractable epilepsy.

4.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548996

RESUMO

Objective.Previous electrophysiological research has characterized canonical oscillatory patterns associated with movement mostly from recordings of primary sensorimotor cortex. Less work has attempted to decode movement based on electrophysiological recordings from a broader array of brain areas such as those sampled by stereoelectroencephalography (sEEG), especially in humans. We aimed to identify and characterize different movement-related oscillations across a relatively broad sampling of brain areas in humans and if they extended beyond brain areas previously associated with movement.Approach.We used a linear support vector machine to decode time-frequency spectrograms time-locked to movement, and we validated our results with cluster permutation testing and common spatial pattern decoding.Main results.We were able to accurately classify sEEG spectrograms during a keypress movement task versus the inter-trial interval. Specifically, we found these previously-described patterns: beta (13-30 Hz) desynchronization, beta synchronization (rebound), pre-movement alpha (8-15 Hz) modulation, a post-movement broadband gamma (60-90 Hz) increase and an event-related potential. These oscillatory patterns were newly observed in a wide range of brain areas accessible with sEEG that are not accessible with other electrophysiology recording methods. For example, the presence of beta desynchronization in the frontal lobe was more widespread than previously described, extending outside primary and secondary motor cortices.Significance.Our classification revealed prominent time-frequency patterns which were also observed in previous studies that used non-invasive electroencephalography and electrocorticography, but here we identified these patterns in brain regions that had not yet been associated with movement. This provides new evidence for the anatomical extent of the system of putative motor networks that exhibit each of these oscillatory patterns.


Assuntos
Eletroencefalografia , Córtex Sensório-Motor , Humanos , Movimento/fisiologia , Eletrocorticografia/métodos , Potenciais Evocados
6.
Front Hum Neurosci ; 14: 569973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192400

RESUMO

Psychiatric disorders are increasingly understood as dysfunctions of hyper- or hypoconnectivity in distributed brain circuits. A prototypical example is obsessive compulsive disorder (OCD), which has been repeatedly linked to hyper-connectivity of cortico-striatal-thalamo-cortical (CSTC) loops. Deep brain stimulation (DBS) and lesions of CSTC structures have shown promise for treating both OCD and related disorders involving over-expression of automatic/habitual behaviors. Physiologically, we propose that this CSTC hyper-connectivity may be reflected in high synchrony of neural firing between loop structures, which could be measured as coherent oscillations in the local field potential (LFP). Here we report the results from the pilot patient in an Early Feasibility study (https://clinicaltrials.gov/ct2/show/NCT03184454) in which we use the Medtronic Activa PC+ S device to simultaneously record and stimulate in the supplementary motor area (SMA) and ventral capsule/ventral striatum (VC/VS). We hypothesized that frequency-mismatched stimulation should disrupt coherence and reduce compulsive symptoms. The patient reported subjective improvement in OCD symptoms and showed evidence of improved cognitive control with the addition of cortical stimulation, but these changes were not reflected in primary rating scales specific to OCD and depression, or during blinded cortical stimulation. This subjective improvement was correlated with increased SMA and VC/VS coherence in the alpha, beta, and gamma bands, signals which persisted after correcting for stimulation artifacts. We discuss the implications of this research, and propose future directions for research in network modulation in OCD and more broadly across psychiatric disorders.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35252739

RESUMO

Precise synchronization of events displayed on a monitor to recordings of time series data is critical for applications such as vision or psychophysics research. To achieve this, researchers often use a photodiode to convert the luminance on a monitor over time into a voltage time course, which is what is recorded. pd-parser matches photodiode deflection events to time-stamped events; it is particularly useful when the photodiode signal is corrupted or there is drift between the clock of the computer controlling the monitor and the data acquisition computer clock.

8.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346001

RESUMO

Approach-avoidance conflict arises when the drives to pursue reward and avoid harm are incompatible. Previous neuroimaging studies of approach-avoidance conflict have shown large variability in reported neuroanatomical correlates. These prior studies have generally neglected to account for potential sources of variability, such as individual differences in choice preferences and modeling of hemodynamic response during conflict. In the present study, we controlled for these limitations using a hierarchical Bayesian model (HBM). This enabled us to measure participant-specific per-trial estimates of conflict during an approach-avoidance task. We also employed a variable epoch method to identify brain structures specifically sensitive to conflict. In a sample of 28 human participants, we found that only a limited set of brain structures [inferior frontal gyrus (IFG), right dorsolateral prefrontal cortex (dlPFC), and right pre-supplementary motor area (pre-SMA)] are specifically correlated with approach-avoidance conflict. These findings suggest that controlling for previous sources of variability increases the specificity of the neuroanatomical correlates of approach-avoidance conflict.


Assuntos
Aprendizagem da Esquiva/fisiologia , Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Conflito Psicológico , Adulto , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Recompensa
9.
Artigo em Inglês | MEDLINE | ID: mdl-35990374

RESUMO

The development of the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016) gave the neuroscientific community a standard to organize and share data. BIDS prescribes file naming conventions and a folder structure to store data in a set of already existing file formats. Next to rules about organization of the data itself, BIDS provides standardized templates to store associated metadata in the form of Javascript Object Notation (JSON) and tab separated value (TSV) files. It thus facilitates data sharing, eases metadata querying, and enables automatic data analysis pipelines. BIDS is a rich system to curate, aggregate, and annotate neuroimaging databases.

10.
PLoS One ; 13(12): e0207781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517149

RESUMO

Oscillations of the brain's local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8-15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15-30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuro-psychiatric disease.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Neurorretroalimentação/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Lobo Frontal/fisiologia , Macaca mulatta/fisiologia , Masculino , Modelos Animais , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...