Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 652-657, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30398889

RESUMO

Semiconductor nanowires featuring strong spin-orbit interactions (SOI), represent a promising platform for a broad range of novel technologies, such as spintronic applications or topological quantum computation. However, experimental studies into the nature and the orientation of the SOI vector in these wires remain limited despite being of upmost importance. Typical devices feature the nanowires placed on top of a substrate which modifies the SOI vector and spoils the intrinsic symmetries of the system. In this work, we report experimental results on suspended InAs nanowires, in which the wire symmetries are fully preserved and clearly visible in transport measurements. Using a vectorial magnet, the nontrivial evolution of weak antilocalization (WAL) is tracked through all 3D space, and both the spin-orbit length l SO and coherence length lφ are determined as a function of the magnetic field magnitude and direction. Studying the angular maps of the WAL signal, we demonstrate that the average SOI within the nanowire is isotropic and that our findings are consistent with a semiclassical quasi-1D model of WAL adapted to include the geometrical constraints of the nanostructure. Moreover, by acting on properly designed side gates, we apply an external electric field introducing an additional vectorial Rashba spin-orbit component whose strength can be controlled by external means. These results give important hints on the intrinsic nature of suspended nanowire and can be interesting for the field of spintronics as well as for the manipulation of Majorana bound states in devices based on hybrid semiconductors.

2.
Nat Commun ; 8: 14984, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401951

RESUMO

The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

3.
Nano Lett ; 17(4): 2336-2341, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28231001

RESUMO

We investigate the metallic phases observed in hybrid metal-GaAs nanowire devices obtained by controlled thermal annealing of Ni/Au electrodes. Devices are fabricated onto a SiN membrane compatible with transmission electron microscopy studies. Energy dispersive X-ray spectroscopy allows us to show that the nanowire body includes two Ni-rich phases that thanks to an innovative use of electron diffraction tomography can be unambiguously identified as Ni3GaAs and Ni5As2 crystals. The mechanisms of Ni incorporation leading to the observed phenomenology are discussed.

4.
Nano Lett ; 16(12): 7950-7955, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960509

RESUMO

We demonstrate tunable bistability and a strong negative differential resistance in InAs/GaSb core-shell nanowire devices embedding a radial broken-gap heterojunction. Nanostructures have been grown using a catalyst-free synthesis on a Si substrate. Current-voltage characteristics display a top peak-to-valley ratio of 4.8 at 4.2 K and 2.2 at room temperature. The Esaki effect can be modulated-or even completely quenched-by field effect, by controlling the band bending profile along the azimuthal angle of the radial heterostructure. Hysteretic behavior is also observed in the presence of a suitable resistive load. Our results indicate that high-quality broken-gap devices can be obtained using Au-free growth.

5.
Sci Rep ; 6: 30621, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466216

RESUMO

The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.

6.
Nanotechnology ; 26(38): 385302, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26335273

RESUMO

We present a novel technique for the realization of suspended Josephson junctions based on InAs semiconductor nanowires. The devices are assembled using a technique of drop-casting guided by dielectrophoresis, which allows one to finely align the nanostructures on top of the electrodes. The proposed architecture removes the interaction between the nanowire and the substrate which is known to influence disorder and the orientation of the Rashba vector. The relevance of this approach in view of the implementation of hybrid Josephson junctions based on semiconducting nanowires coupled with high-temperature superconductors is discussed.

7.
Nano Lett ; 15(3): 1803-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25671540

RESUMO

We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

8.
Nanotechnology ; 22(10): 105201, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21289399

RESUMO

We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling and to operate up to temperatures of ∼ 2.5 K with reduced power dissipation. We show that our geometry allows one to obtain nearly-symmetric devices with very large magnetic field modulation of the critical current. All these properties make these devices attractive for sensitive magnetometry applications and quantum circuit implementation.

9.
Phys Rev Lett ; 101(18): 186802, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999847

RESUMO

We investigate tunable hole quantum dots defined by surface gating Ge/Si core-shell nanowire heterostructures. In single level Coulomb-blockade transport measurements at low temperatures spin doublets are found, which become sequentially filled by holes. Magnetotransport measurements allow us to extract a g factor g approximately 2 close to the value of a free spin-1/2 particle in the case of the smallest dot. In less confined quantum dots smaller g factor values are observed. This indicates a lifting of the expected strong spin-orbit interaction effects in the valence band for holes confined in small enough quantum dots. By comparing the excitation spectrum with the addition spectrum we tentatively identify a hole exchange interaction strength chi approximately 130 microeV.

10.
Nanotechnology ; 19(43): 435201, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21832684

RESUMO

The capacitance of arrays of vertical wrapped-gate InAs nanowires is analysed. With the help of a Poisson-Schrödinger solver, information about the doping density can be obtained directly. Further features in the measured capacitance-voltage characteristics can be attributed to the presence of surface states as well as the coexistence of electrons and holes in the wire. For both scenarios, quantitative estimates are provided. It is furthermore shown that the difference between the actual capacitance and the geometrical limit is quite large, and depends strongly on the nanowire material.

11.
Nano Lett ; 7(9): 2707-10, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17665963

RESUMO

Monatomic layers of graphite are emerging as building blocks for novel optoelectronic devices. Experimental studies on a single graphite layer (graphene) are today possible since very thin graphite can be identified on a dielectric substrate using a normal optical microscope. We investigate the mechanism behind the strong visibility of graphite, and we discuss the importance of substrates and of the microscope objective used for the imaging.


Assuntos
Colorimetria/métodos , Grafite/química , Teste de Materiais/métodos , Microscopia/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/métodos , Substâncias Macromoleculares/química , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...