Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 3): 793-807, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846767

RESUMO

Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP-NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP-NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible.

2.
ACS Omega ; 6(39): 25562-25573, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632213

RESUMO

This study examines the role of defects in structure-property relationships in spinel LiMn1.5Ni0.5O4 (LMNO) cathode materials, especially in terms of Mn3+ content, degree of disorder, and impurity phase, without the use of the traditional high-temperature annealing (≥700 °C used for making disordered LMNO). Two different phases of LMNO (i.e., highly P4332-ordered and highly Fd3̅m-disordered) have been prepared from two different ß-MnO2-δ precursors obtained from an argon-rich atmosphere (ß-MnO2-δ (Ar)) and a hydrogen-rich atmosphere [ß-MnO2-δ (H2)]. The LMNO samples and their corresponding ß-MnO2-δ precursors are thoroughly characterized using different techniques including high-resolution transmission electron microscopy, field-emission scanning electron microscopy, Raman spectroscopy, powder neutron diffraction, X-ray photoelectron spectroscopy, synchrotron X-ray diffraction, X-ray absorption near-edge spectroscopy, and electrochemistry. LMNO from ß-MnO2-δ (H2) exhibits higher defects (oxygen vacancy content) than the one from the ß-MnO2-δ (Ar). For the first time, defective ß-MnO2-δ has been adopted as precursors for LMNO cathode materials with controlled oxygen vacancy, disordered phase, Mn3+ content, and impurity contents without the need for conventional methods of doping with metal ions, high synthetic temperature, use of organic compounds, postannealing, microwave, or modification of the temperature-cooling profiles. The results show that the oxygen vacancy changes concurrently with the degree of disorder and Mn3+ content, and the best electrochemical performance is only obtained at 850 °C for LMNO-(Ar). The findings in this work present unique opportunities that allow the use of ß-MnO2-δ as viable precursors for manipulating the structure-property relationships in LMNO spinel materials for potential development of high-performance high-voltage lithium-ion batteries.

3.
Materials (Basel) ; 14(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919393

RESUMO

In this memory effect study, hydrotalcite-type compounds in the lamellar double hydroxide-like (LDH)/zeolite A composite material were analyzed using X-Ray Diffration XRD) in situ experiments. Three samples were analyzed: Al,Mg-LDH, Al,Mg-LDH/ZA composite, and a physical mixture (50/50 wt%) of zeolite A and Al,Mg-LDH. The Al,Mg-LDH sample was treated at 500 °C in an O2 atmosphere and subsequently rehydrated. The Al,Mg-LDH/ZA composites had three treatments: one was performed at 300 °C in a He atmosphere, and two treatments were performed with an O2 atmosphere at 300 and 500 °C. In the physical mixture, two treatments were carried out under O2 flow at 500 °C and under He flow at 300 °C. Both went through the rehydration process. All samples were also analyzed by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The results show that the LDH phase in the Al,Mg-LDH/ZA compounds has memory effects, and thus, the compound can be calcined and rehydrated. For the LDH in the composite, the best heat treatment system is a temperature of 300 °C in an inert atmosphere.

4.
ACS Appl Mater Interfaces ; 13(11): 13123-13131, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689260

RESUMO

Li-O2 battery technology offers large theoretical energy density, considered a promising alternative energy storage technology for a variety of applications. One of the main advances made in recent years is the use of soluble catalysts, known as redox mediators (RM), decreasing the charge overpotential and improving cyclability. Despite its potential, much is still unknown regarding its dynamic, especially over higher loading electrodes, where mass transport may be an issue and the interplay with common impurities in the electrolyte, like residual water. Here we perform for the first time an operando XRD characterization of a DMSO-based LiBr mediated Li-O2 battery with a high loading electrode based on CNTs aiming to reveal these dynamics and track chemical changes in the electrode. Our results show that, depending on the electrode architecture, the system's issue can move from catalytic to a mass transfer. We also assess the effect of residual water in the system to better understand the reaction routes. As a result, we observed that with DMSO, the system is even more sensitive to water contamination compared to glyme-based studies reported in the literature. Despite the activity of LiBr on the Li-peroxide oxidation and its contribution to cyclability, with the system and electrode configuration used in this study, we verified that a mass transfer limitation caused a cell "sudden death" caused by clogging after cycling.

5.
iScience ; 15: 467-488, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31125909

RESUMO

In biomass conversion, Nb2O5 has attracted increasing attention as a catalyst support presenting water-tolerant Lewis acid sites. Herein, we address the design of Ni/Nb2O5 catalysts for hydrotreating of lignin to hydrocarbons. To optimize the balance between acidic and hydrogenating properties, the catalysts were first evaluated in the hydrotreating of diphenyl ether. The best catalyst candidate was further explored in the conversion of lignin oil obtained by catalytic upstream biorefining of poplar. As primary products, cycloalkanes were obtained, demonstrating the potential of Ni/Nb2O5 catalysts for the lignin-to-fuels route. However, the Lewis acidity of Nb2O5 also catalyzes coke formation via lignin species condensation. Thereby, an acidity threshold should be found so that dehydration reactions essential to the hydrotreatment are not affected, but the condensation of lignin species prevented. This article provides a critical "beginning-to-end" analysis of aspects crucial to the catalyst design to produce lignin biofuels.

6.
ChemSusChem ; 11(5): 872-880, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316333

RESUMO

Hybrid organic-inorganic anatase (hybrid-TiO2 ) is prepared by a facile hydrothermal synthesis method employing citric acid. The synthetic approach results in a high surface-area nanocrystalline anatase polymorph of TiO2 . The uncalcined hybrid-TiO2 is directly studied as a catalyst for the conversion of glucose into 5-hydroxymethylfurfural (HMF). In the presence of the hybrid-TiO2 , HMF yields up to 45 % at glucose conversions up to 75 % were achieved in water at 130 °C in a monophasic batch reactor. As identified by Ti K-edge XANES, hybrid-TiO2 contains a large fraction of fivefold coordinatively unsaturated TiIV sites, which act as the Lewis acid catalyst for the conversion of glucose into fructose. As citric acid is anchored in the structure of hybrid-TiO2 , carboxylate groups seem to catalyze the sequential conversion of fructose into HMF. The fate of citric acid bound to anatase and the TiIV Lewis acid sites throughout recycling experiments is also investigated. In a broader context, this contribution outlines the importance of hydrothermal synthesis for the creation of water-resistant Lewis acid sites for the conversion of sugars. Importantly, the use of the hybrid-TiO2 with no calcination step contributes to dramatically decreasing the energy consumption in the catalyst preparation.


Assuntos
Furaldeído/análogos & derivados , Glucose/química , Titânio/química , Catálise , Ácido Cítrico/química , Furaldeído/síntese química , Ácidos de Lewis/química , Nanopartículas/química , Reciclagem , Água/química
7.
Chem Sci ; 7(11): 6815-6823, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-28042468

RESUMO

When Au is subdivided to the nanoscale its reactivity changes from an inert nature to one of incredible reactivity which is not replicated by other catalysts. When dispersed onto metal oxides such as TiO2, nano-Au has shown high reactivities for a multitude of reduction and oxidation reactions of industrial importance with potential and current uses such as, CO oxidation, NO x reduction, purification of hydrogen for fuel cells, water gas shift reactions, abatement of volatile organic compounds (VOC's) as well as pollution and emission control systems such as autocatalysts. However, many industrially important reactions and applications operate under harsh conditions where the catalyst is exposed to high temperatures and further needs to operate for extended periods of time. These conditions cause Au nanoparticle sintering whereby small, highly active clusters form large clusters which are catalytically inactive. For this reason, research into stabilizing Au nanoparticles has abounded with a goal of producing durable, thermally stable catalysts for industrial applications. Here we show a durable, thermally stable Au-TiO2 catalyst which has been developed by rational design. The catalyst exhibits a 3-dimensional, radially aligned nanorod structure, already locked into the thermodynamically stable polymorph, via a scalable and facile synthesis, with Au nanoparticles isolated on the support structure. As the Au nanoparticles are highly stable the new catalyst is able to maintain light-off for CO oxidation below 115 °C even after multiple cycles at 800 °C. This ability of the catalyst to resist multiple thermal cycles to high temperature while remaining active at low temperatures shows promise for various industrial applications. The thermal stability of the catalyst is investigated and characterized through morphological and structural studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA