Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 26(12): 3150-61, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18757300

RESUMO

Cell cycle regulation plays a fundamental role in stem cell biology. A balance between quiescence and proliferation of hematopoietic stem cells in interaction with the microenvironment is critical for sustaining long-term hematopoiesis and for protection against stress. We analyzed the molecular mechanisms by which stromal cell-derived factor-1 (SDF-1) exhibited a cell cycle-promoting effect and interacted with transforming growth factor-beta (TGF-beta), which has negative effects on cell cycle orchestration of human hematopoietic CD34(+) progenitor cells. We demonstrated that a low concentration of SDF-1 modulated the expression of key cell cycle regulators such as cyclins, cyclin-dependent kinase inhibitors, and TGF-beta target genes, confirming its cell cycle-promoting effect. We showed that a cross-talk between SDF-1- and TGF-beta-related signaling pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation participated in the control of CD34(+) cell cycling. We demonstrated a pivotal role of two downstream effectors of the PI3K/Akt pathway, FoxO3a and mammalian target of rapamycin, as connectors in the SDF-1-/TGF-beta-induced control of the cycling/quiescence switch and proposed a model integrating a dialogue between the two molecules in cell cycle progression. Our data shed new light on the signaling pathways involved in SDF-1 cell cycle-promoting activity and suggest that the balance between SDF-1- and TGF-beta-activated pathways is critical for the regulation of hematopoietic progenitor cell cycle status.


Assuntos
Quimiocina CXCL12/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD34/biossíntese , Ciclo Celular , Proteína Forkhead Box O3 , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco/citologia , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...