Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Ann Clin Transl Neurol ; 11(5): 1359-1364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561955

RESUMO

Neuroferritinopathy is a disorder of neurodegeneration with brain iron accumulation that has no proven disease-modifying treatments. Clinical trials require biomarkers of iron deposition. We examined brain iron accumulation in one presymptomatic FTL mutation carrier, two individuals with neuroferritinopathy and one healthy control using ultra-high-field 7T MRI. There was increased magnetic susceptibility, suggestive of iron deposition, in superficial and deep gray matter in both presymptomatic and symptomatic neuroferritinopathy. Cavitation of the putamen and globus pallidus increased with disease stage and at follow up. The widespread brain iron deposition in presymptomatic and early disease provides an opportunity for monitoring disease-modifying intervention.


Assuntos
Distúrbios do Metabolismo do Ferro , Ferro , Imageamento por Ressonância Magnética , Distrofias Neuroaxonais , Humanos , Distrofias Neuroaxonais/diagnóstico por imagem , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/genética , Ferro/metabolismo , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Pessoa de Meia-Idade , Apoferritinas/metabolismo , Apoferritinas/genética
2.
Magn Reson Imaging ; 111: 35-46, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547935

RESUMO

Diffusion MRI (dMRI) is inherently limited by SNR. Scanning at 7 T increases intrinsic SNR but 7 T MRI scans suffer from regions of signal dropout, especially in the temporal lobes and cerebellum. We applied dynamic parallel transmit (pTx) to allow whole-brain 7 T dMRI and compared with circularly polarized (CP) pulses in 6 subjects. Subject-specific 2-spoke dynamic pTx pulses were designed offline for 8 slabs covering the brain. We used vendor-provided B0 and B1+ mapping. Spokes positions were set using the Fourier difference approach, and RF coefficients optimized with a Jacobi-matrix high-flip-angle optimizer. Diffusion data were analyzed with FSL. Comparing whole-brain averages for pTx against CP scans: mean flip angle error improved by 15% for excitation (2-spoke-VERSE 15.7° vs CP 18.4°, P = 0.012) and improved by 14% for refocusing (2-spoke-VERSE 39.7° vs CP 46.2°, P = 0.008). Computed spin-echo signal standard deviation improved by 14% (2-spoke-VERSE 0.185 vs 0.214 CP, P = 0.025). Temporal SNR increased by 5.4% (2-spoke-VERSE 8.47 vs CP 8.04, P = 0.004) especially in the inferior temporal lobes. Diffusion fitting uncertainty decreased by 6.2% for first fibers (2-spoke VERSE 0.0655 vs CP 0.0703, P < 0.001) and 1.3% for second fibers (2-spoke VERSE 0.139 vs CP 0.141, P = 0.01). In conclusion, dynamic parallel transmit improves the uniformity of 7 T diffusion-weighted imaging. In future, less restrictive SAR limits for parallel transmit scans are expected to allow further improvements.

3.
Alzheimers Dement ; 20(4): 2779-2793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421123

RESUMO

INTRODUCTION: Entorhinal cortex (EC) is the first cortical region to exhibit neurodegeneration in Alzheimer's disease (AD), associated with EC grid cell dysfunction. Given the role of grid cells in path integration (PI)-based spatial behaviors, we predicted that PI impairment would represent the first behavioral change in adults at risk of AD. METHODS: We compared immersive virtual reality (VR) PI ability to other cognitive domains in 100 asymptomatic midlife adults stratified by hereditary and physiological AD risk factors. In some participants, behavioral data were compared to 7T magnetic resonance imaging (MRI) measures of brain structure and function. RESULTS: Midlife PI impairments predicted both hereditary and physiological AD risk, with no corresponding multi-risk impairment in episodic memory or other spatial behaviors. Impairments associated with altered functional MRI signal in the posterior-medial EC. DISCUSSION: Altered PI may represent the transition point from at-risk state to disease manifestation in AD, prior to impairment in other cognitive domains.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
4.
Magn Reson Med ; 91(6): 2358-2373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193277

RESUMO

PURPOSE: Spoke pulses improve excitation homogeneity in parallel-transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single-slice and simultaneous multislice imaging. THEORY AND METHODS: BOGAT adds an outer loop to optimize kT-space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT-space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor-provided Fourier transform approach with the same magnitude least squares RF optimizer. RESULTS: The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. CONCLUSION: BOGAT efficiently estimated near-global optimum spoke positions for the two-spoke tests, reducing flip-angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Teorema de Bayes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Análise dos Mínimos Quadrados , Encéfalo/diagnóstico por imagem
5.
Magn Reson Med ; 90(6): 2643-2652, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37529979

RESUMO

PURPOSE: To develop a temperature-controlled cooling system to facilitate accurate quantitative post-mortem MRI and enable scanning of unfixed tissue. METHODS: A water cooling system was built and integrated with a 7T scanner to minimize temperature drift during MRI scans. The system was optimized for operational convenience and rapid deployment to ensure efficient workflow, which is critical for scanning unfixed post-mortem samples. The performance of the system was evaluated using a 7-h diffusion MRI protocol at 7T with a porcine tissue sample. Quantitative T1 , T2 , and ADC maps were interspersed with the diffusion scans at seven different time points to investigate the temperature dependence of MRI tissue parameters. The impact of temperature changes on biophysical model fitting of diffusion MRI data was investigated using simulation. RESULTS: Tissue T1 , T2 , and ADC values remained stable throughout the diffusion MRI scan using the developed cooling system, but varied substantially using a conventional scan setup without temperature control. The cooling system enabled accurate estimation of biophysical model parameters by stabilizing the tissue temperature throughout the diffusion scan, while the conventional setup showed evidence of significantly biased estimation. CONCLUSION: A temperature-controlled cooling system was developed to tackle the challenge of heating in post-mortem imaging, which shows potential to improve the accuracy and reliability of quantitative post-mortem imaging and enables long scans of unfixed tissue.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Suínos , Animais , Temperatura , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Autopsia
6.
Nat Commun ; 14(1): 3324, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369695

RESUMO

There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.


Assuntos
Ácido Glutâmico , Transtorno Obsessivo-Compulsivo , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Comportamento Compulsivo , Ácido gama-Aminobutírico , Imageamento por Ressonância Magnética
7.
Circulation ; 148(2): 109-123, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37199155

RESUMO

BACKGROUND: The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results. METHODS: To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.9±9.1) underwent separate infusions of insulin+glucose infusion (I+G) or Intralipid infusion. We used cardiovascular magnetic resonance to assess cardiac function and measured energetics using phosphorus-31 magnetic resonance spectroscopy. To investigate the effects of these infusions on cardiac substrate use, function, and myocardial oxygen uptake (MVo2), invasive arteriovenous sampling and pressure-volume loops were performed (n=9). RESULTS: At rest, we found that the heart had considerable metabolic flexibility. During I+G, cardiac glucose uptake and oxidation were predominant (70±14% total energy substrate for adenosine triphosphate production versus 17±16% for Intralipid; P=0.002); however, no change in cardiac function was seen relative to basal conditions. In contrast, during Intralipid infusion, cardiac long-chain fatty acid (LCFA) delivery, uptake, LCFA acylcarnitine production, and fatty acid oxidation were all increased (LCFA 73±17% of total substrate versus 19±26% total during I+G; P=0.009). Myocardial energetics were better with Intralipid compared with I+G (phosphocreatine/adenosine triphosphate 1.86±0.25 versus 2.01±0.33; P=0.02), and systolic and diastolic function were improved (LVEF 34.9±9.1 baseline, 33.7±8.2 I+G, 39.9±9.3 Intralipid; P<0.001). During increased cardiac workload, LCFA uptake and oxidation were again increased during both infusions. There was no evidence of systolic dysfunction or lactate efflux at 65% maximal heart rate, suggesting that a metabolic switch to fat did not cause clinically meaningful ischemic metabolism. CONCLUSIONS: Our findings show that even in nonischemic heart failure with reduced ejection fraction with severely impaired systolic function, significant cardiac metabolic flexibility is retained, including the ability to alter substrate use to match both arterial supply and changes in workload. Increasing LCFA uptake and oxidation is associated with improved myocardial energetics and contractility. Together, these findings challenge aspects of the rationale underlying existing metabolic therapies for heart failure and suggest that strategies promoting fatty acid oxidation may form the basis for future therapies.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Metabolismo Energético , Função Ventricular Esquerda , Miocárdio/metabolismo , Insuficiência Cardíaca/patologia , Trifosfato de Adenosina/metabolismo , Disfunção Ventricular Esquerda/patologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
8.
Circulation ; 147(22): 1654-1669, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37070436

RESUMO

BACKGROUND: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness. METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated. RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment difference [empagliflozin - placebo], -0.25 [95% CI, -0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, -0.16 [95% CI, -0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF (adjusted mean treatment difference, -0.13 [95% CI, -0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, -0.22 [95% CI, -0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed. CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03332212.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Estudos Prospectivos , Dobutamina/farmacologia , Metabolismo Energético , Trifosfato de Adenosina
9.
NMR Biomed ; : e4950, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046414

RESUMO

Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.

10.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778428

RESUMO

The entorhinal cortex (EC) is the first cortical region to exhibit neurodegeneration in Alzheimer's disease (AD), associated with EC grid cell dysfunction. Given the role of grid cells in path integration, we predicted that path integration impairment would represent the first behavioural change in adults at-risk of AD. Using immersive virtual reality, we found that midlife path integration impairments predicted both hereditary and physiological AD risk, with no corresponding impairment on tests of episodic memory or other spatial behaviours. Impairments related to poorer angular estimation and were associated with hexadirectional grid-like fMRI signal in the posterior-medial EC. These results indicate that altered path integration may represent the transition point from at-risk state to disease onset in AD, prior to impairment in other cognitive domains.

11.
NMR Biomed ; 36(1): e4813, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995750

RESUMO

A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Espectroscopia de Ressonância Magnética
12.
Sci Rep ; 12(1): 20306, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434036

RESUMO

7 Tesla-field-strength (7 T) Magnetic Resonance Imaging allows the small perforating arteries in the brain to be visualised, and this modality may allow visualisation of the arterial pathology in cerebral small vessel disease. Most studies have used standard Time-of-Flight (ToF) Magnetic Resonance Angiography (MRA). Whether the use of contrast enhancement improves perforating artery visualisation at 7 T remains unclear. In a prospective study, we compared standard ToF MRA with contrast-enhanced (CE) ToF MRA at 7 T for the visualisation of the lenticulostriate arteries (LSAs). Ten patients with symptomatic lacunar stroke were recruited (mean age, SD, 64 ± 9.9 years). Visualisation was assessed using a visual rating scale administered by two independent expert readers and length of the LSAs visible. Visualisation of the LSAs was improved with CE ToF MRA. The mean Visibility and Sharpness Score was higher for CE ToF MRA over standard ToF MRA (2.55 ± 0.64 vs. 1.75 ± 0.68; P = 0.0008). The mean length of LSA visualised was significantly longer with CE ToF MRA compared to standard ToF MRA (24.4 ± 4.5 vs. 21.9 ± 4.0 mm; P = 0.01). CE ToF MRA offers improved visualisation of the LSAs over standard ToF MRA. The addition of contrast may improve the ability to visualise cerebral small vessel disease arterial pathology.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Angiografia por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Angiografia por Ressonância Magnética/métodos , Estudos Prospectivos , Artéria Cerebral Média , Imageamento por Ressonância Magnética
13.
Diabetes Care ; 45(12): 3007-3015, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099225

RESUMO

OBJECTIVE: We investigated if women with gestational diabetes mellitus (GDM) in the third trimester of pregnancy exhibit adverse cardiac alterations in myocardial energetics, function, or tissue characteristics. RESEARCH DESIGN AND METHODS: Thirty-eight healthy, pregnant women and 30 women with GDM were recruited. Participants underwent phosphorus MRS and cardiovascular magnetic resonance for assessment of myocardial energetics (phosphocreatine [PCr] to ATP ratio), tissue characteristics, biventricular volumes and ejection fractions, left ventricular (LV) mass, global longitudinal shortening (GLS), and mitral in-flow E-wave to A-wave ratio. RESULTS: Participants were matched for age, gestational age, and ethnicity. The following data are reported as mean ± SD. The women with GDM had higher BMI (27 ± 4 vs. 33 ± 5 kg/m2; P = 0.0001) and systolic (115 ± 11 vs. 121 ± 13 mmHg; P = 0.04) and diastolic (72 ± 7 vs. 76 ± 9 mmHg; P = 0.04) blood pressures. There was no difference in N-terminal pro-brain natriuretic peptide concentrations between the groups. The women with GDM had lower myocardial PCr to ATP ratio (2.2 ± 0.3 vs. 1.9 ± 0.4; P < 0.0001), accompanied by lower LV end-diastolic volumes (76 ± 12 vs. 67 ± 11 mL/m2; P = 0.002) and higher LV mass (90 ± 13 vs. 103 ± 18 g; P = 0.001). Although ventricular ejection fractions were similar, the GLS was reduced in women with GDM (-20% ± 3% vs. -18% ± 3%; P = 0.008). CONCLUSIONS: Despite no prior diagnosis of diabetes, women with obesity and GDM manifest impaired myocardial contractility and higher LV mass, associated with reductions in myocardial energetics in late pregnancy compared with lean women with healthy pregnancy. These findings may aid our understanding of the long-term cardiovascular risks associated with GDM.


Assuntos
Diabetes Gestacional , Feminino , Gravidez , Humanos , Obesidade/complicações , Terceiro Trimestre da Gravidez , Coração , Trifosfato de Adenosina
14.
Magn Reson Imaging ; 93: 163-174, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863691

RESUMO

PURPOSE: Parallel transmission (pTx) is an approach to improve image uniformity for ultra-high field imaging. In this study, we modified an echo planar imaging (EPI) sequence to design subject-specific pTx pulses online. We compared its performance against EPI with conventional circularly polarised (CP) pulses. METHODS: We compared the pTx-EPI and CP-EPI sequences in a short EPI acquisition protocol and for two different functional paradigms in six healthy volunteers (2 female, aged 23-36 years, mean age 29.2 years). We chose two paradigms that are typically affected by signal dropout at 7 T: a visual objects localiser to determine face/scene selective brain regions and a semantic-processing task. RESULTS: Across all subjects, pTx-EPI improved whole-brain mean temporal signal-to-noise ratio (tSNR) by 11.0% compared to CP-EPI. We also compared the ability of pTx-EPI and CP-EPI to detect functional activation for three contrasts over the two paradigms: face > object and scene > object for the visual objects localiser and semantic association > pattern matching for the semantic-processing paradigm. Across all three contrasts, pTx-EPI showed higher median z-scores and detected more active voxels in relevant areas, as determined from previous 3 T studies. CONCLUSION: We have demonstrated a workflow for EPI acquisitions with online per-subject pulse calculations. We saw improved performance in both tSNR and functional acquisitions from pTx-EPI. Thus, we believe that online calculation pTx-EPI is robust enough for future fMRI studies, especially where activation is expected in brain areas liable to significant signal dropout.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Meios de Contraste , Imagem Ecoplanar/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
15.
PLoS One ; 17(6): e0269957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709167

RESUMO

Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously demonstrated decreased energy reserves in the form of phosphocreatine to adenosine-tri-phosphate ratio (PCr/ATP) in the hearts of patients with type 2 diabetes (T2DM). Recent 31P-MRS techniques using 7T systems, e.g. long mixing time stimulated echo acquisition mode (STEAM), allow deeper insight into cardiac metabolism through assessment of inorganic phosphate (Pi) content and myocardial pH, which play pivotal roles in energy production in the heart. Therefore, we aimed to further explore the cardiac metabolic phenotype in T2DM using STEAM at 7T. Seventeen patients with T2DM and twenty-three healthy controls were recruited and their cardiac PCr/ATP, Pi/PCr and pH were assessed at 7T. Diastolic function of all patients with T2DM was assessed using echocardiography to investigate the relationship between diastolic dysfunction and cardiac metabolism. Mirroring the decreased PCr/ATP (1.70±0.31 vs. 2.07±0.39; p<0.01), the cardiac Pi/PCr was increased (0.13±0.07 vs. 0.10±0.03; p = 0.02) in T2DM patients in comparison to healthy controls. Myocardial pH was not significantly different between the groups (7.14±0.12 vs. 7.10±0.12; p = 0.31). There was a negative correlation between PCr/ATP and diastolic function (R2 = 0.33; p = 0.02) in T2DM. No correlation was observed between diastolic function and Pi/PCr and (R2 = 0.16; p = 0.21). In addition, we did not observe any correlation between cardiac PCr/ATP and Pi/PCr (p = 0.19). Using STEAM 31P-MRS at 7T we have for the first time explored Pi/PCr in the diabetic human heart and found it increased when compared to healthy controls. The lack of correlation between measured PCr/ATP and Pi/PCr suggests that independent mechanisms might contribute to these perturbations.


Assuntos
Diabetes Mellitus Tipo 2 , Fósforo , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Fosfocreatina/metabolismo , Fósforo/metabolismo
16.
Front Physiol ; 13: 793987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173629

RESUMO

In this acute intervention study, we investigated the potential benefit of ketone supplementation in humans by studying cardiac phosphocreatine to adenosine-triphosphate ratios (PCr/ATP) and skeletal muscle PCr recovery using phosphorus magnetic resonance spectroscopy (31P-MRS) before and after ingestion of a ketone ester drink. We recruited 28 healthy individuals: 12 aged 23-70 years for cardiac 31P-MRS, and 16 aged 60-75 years for skeletal muscle 31P-MRS. Baseline and post-intervention resting cardiac and dynamic skeletal muscle 31P-MRS scans were performed in one visit, where 25 g of the ketone monoester, deltaG®, was administered after the baseline scan. Administration was timed so that post-intervention 31P-MRS would take place 30 min after deltaG® ingestion. The deltaG® ketone drink was well-tolerated by all participants. In participants who provided blood samples, post-intervention blood glucose, lactate and non-esterified fatty acid concentrations decreased significantly (-28.8%, p ≪ 0.001; -28.2%, p = 0.02; and -49.1%, p ≪ 0.001, respectively), while levels of the ketone body D-beta-hydroxybutyrate significantly increased from mean (standard deviation) 0.7 (0.3) to 4.0 (1.1) mmol/L after 30 min (p ≪ 0.001). There were no significant changes in cardiac PCr/ATP or skeletal muscle metabolic parameters between baseline and post-intervention. Acute ketone supplementation caused mild ketosis in blood, with drops in glucose, lactate, and free fatty acids; however, such changes were not associated with changes in 31P-MRS measures in the heart or in skeletal muscle. Future work may focus on the effect of longer-term ketone supplementation on tissue energetics in groups with compromised mitochondrial function.

17.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36612090

RESUMO

Novel biomarkers for tumour burden and bone disease are required to guide clinical management of plasma cell dyscrasias. Recently, bone turnover markers (BTMs) and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) have been explored, although their role in the prospective assessment of multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) is unclear. Here, we conducted a pilot observational cohort feasibility study combining serum BTMs and DW-MRI in addition to standard clinical assessment. Fifty-five patients were recruited (14 MGUS, 15 smouldering MM, 14 new MM and 12 relapsed MM) and had DW-MRI and serum biomarkers (P1NP, CTX-1, ALP, DKK1, sclerostin, RANKL:OPG and BCMA) measured at baseline and 6-month follow-up. Serum sclerostin positively correlated with bone mineral density (r = 0.40-0.54). At baseline, serum BCMA correlated with serum paraprotein (r = 0.42) and serum DKK1 correlated with serum free light chains (r = 0.67); the longitudinal change in both biomarkers differed between International Myeloma Working Group (IMWG)-defined responders and non-responders. Myeloma Response Assessment and Diagnosis System (MY-RADS) scoring of serial DW-MRI correlated with conventional IMWG response criteria for measuring longitudinal changes in tumour burden. Overall, our pilot study suggests candidate radiological and serum biomarkers of tumour burden and bone loss in MM/MGUS, which warrant further exploration in larger cohorts to validate the findings and to better understand their clinical utility.

18.
Front Neurosci ; 15: 715549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630010

RESUMO

The arrival of submillimeter ultra high-field fMRI makes it possible to compare activation profiles across cortical layers. However, the blood oxygenation level dependent (BOLD) signal measured by gradient echo (GE) fMRI is biased toward superficial layers of the cortex, which is a serious confound for laminar analysis. Several univariate and multivariate analysis methods have been proposed to correct this bias. We compare these methods using computational simulations of 7T fMRI data from regions of interest (ROI) during a visual attention paradigm. We also tested the methods on a pilot dataset of human 7T fMRI data. The simulations show that two methods-the ratio of ROI means across conditions and a novel application of Deming regression-offer the most robust correction for superficial bias. Deming regression has the additional advantage that it does not require that the conditions differ in their mean activation over voxels within an ROI. When applied to the pilot dataset, we observed strikingly different layer profiles when different attention metrics were used, but were unable to discern any differences in laminar attention across layers when Deming regression or ROI ratio was applied. Our simulations demonstrates that accurate correction of superficial bias is crucial to avoid drawing erroneous conclusions from laminar analyses of GE fMRI data, and this is affirmed by the results from our pilot 7T fMRI data.

19.
Eur Heart J ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542592

RESUMO

AIMS: We sought to determine if myocardial energetics could distinguish obesity cardiomyopathy as a distinct entity from dilated cardiomyopathy. METHODS AND RESULTS: Sixteen normal weight participants with dilated cardiomyopathy (DCMNW), and 27 with DCM and obesity (DCMOB), were compared to 26 normal weight controls (CTLNW). All underwent cardiac magnetic resonance imaging and 31P spectroscopy to assess function and energetics. Nineteen DCMOB underwent repeat assessment after a dietary weight loss intervention. Adenosine triphosphate (ATP) delivery through creatine kinase (CK flux) was 55% lower in DCMNW than in CTLNW (P = 0.004), correlating with left ventricular ejection fraction (LVEF, r = 0.4, P = 0.015). In contrast, despite similar LVEF (DCMOB 41 ± 7%, DCMNW 38 ± 6%, P = 0.14), CK flux was two-fold higher in DCMOB (P < 0.001), due to higher rate through CK [median kf 0.21 (0.14) vs. 0.11 (0.12) s-1, P = 0.002]. During increased workload, the CTLNW heart increased CK flux by 97% (P < 0.001). In contrast, CK flux was unchanged in DCMNW and fell in DCMOB (by >50%, P < 0.001). Intentional weight loss was associated with positive left ventricular remodelling, with reduced left ventricular end-diastolic volume (by 8%, P < 0.001) and a change in LVEF (40 ± 9% vs. 45 ± 10%, P = 0.002). This occurred alongside a fall in ATP delivery rate with weight loss (by 7%, P = 0.049). CONCLUSIONS: In normal weight, DCM is associated with reduced resting ATP delivery. In obese DCM, ATP demand through CK is greater, suggesting reduced efficiency of energy utilization. Dietary weight loss is associated with significant improvement in myocardial contractility, and a fall in ATP delivery, suggesting improved metabolic efficiency. This highlights distinct energetic pathways in obesity cardiomyopathy, which are both different from dilated cardiomyopathy, and may be reversible with weight loss.

20.
Magn Reson Med ; 86(6): 3246-3258, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272767

RESUMO

PURPOSE: A shortage of suitable donor livers is driving increased use of higher risk livers for transplantation. However, current biomarkers are not sensitive and specific enough to predict posttransplant liver function. This is limiting the expansion of the donor pool. Therefore, better noninvasive tests are required to determine which livers will function following implantation and hence can be safely transplanted. This study assesses the temperature sensitivity of proton density fat fraction and relaxometry parameters and examines their potential for assessment of liver function ex vivo. METHODS: Six ex vivo human livers were scanned during static cold storage following normothermic machine perfusion. Proton density fat fraction, T1 , T2 , and T2∗ were measured repeatedly during cooling on ice. Temperature corrections were derived from these measurements for the parameters that showed significant variation with temperature. RESULTS: Strong linear temperature sensitivities were observed for proton density fat fraction (R2 = 0.61, P < .001) and T1 (R2 = 0.78, P < .001). Temperature correction according to a linear model reduced the coefficient of repeatability in these measurements by 41% and 36%, respectively. No temperature dependence was observed in T2 or T2∗ measurements. Comparing livers deemed functional and nonfunctional during normothermic machine perfusion by hemodynamic and biochemical criteria, T1 differed significantly: 516 ± 50 ms for functional versus 679 ± 60 ms for nonfunctional, P = .02. CONCLUSION: Temperature correction is essential for robust measurement of proton density fat fraction and T1 in cold-stored human livers. These parameters may provide a noninvasive measure of viability for transplantation.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Fígado Gorduroso/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...