Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 23(2): 100831, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31982780

RESUMO

Metabolism is a key regulator of hematopoietic stem cell (HSC) functions. There is a lack of real-time, non-invasive approaches to evaluate metabolism in single HSCs. Using fluorescence lifetime imaging microscopy, we developed a set of metabolic optical biomarkers (MOBs) from the auto-fluorescent properties of metabolic coenzymes NAD(P)H and FAD. The MOBs revealed the enhanced glycolysis, low oxidative metabolism, and distinct mitochondrial localization of HSCs. Importantly, the fluorescence lifetime of enzyme-bound NAD(P)H (τbound) can non-invasively monitor the glycolytic/lactate dehydrogenase activity in single HSCs. As a proof of concept for metabolism-based cell sorting, we further identified HSCs within the Lineage-cKit+Sca1+ (KLS) hematopoietic stem/progenitor population using MOBs and a machine-learning algorithm. Moreover, we revealed the dynamic changes of MOBs, and the association of longer τbound with enhanced glycolysis under HSC stemness-maintaining conditions during HSC culture. Our work thus provides a new paradigm to identify and track the metabolism of single HSCs non-invasively and in real time.

2.
Cell Stem Cell ; 21(6): 806-818.e5, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220665

RESUMO

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.


Assuntos
Células-Tronco Adultas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Animais , Drosophila , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Knockout , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
3.
Cell Rep ; 19(3): 479-486, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423312

RESUMO

The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF) proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA), stimulates GAlert in skeletal muscle stem cells (MuSCs) and fibro-adipogenic progenitors (FAPs). We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing.


Assuntos
Ciclo Celular/efeitos dos fármacos , Serina Endopeptidases/farmacologia , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Serina Endopeptidases/administração & dosagem , Soro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
Cell Stem Cell ; 19(2): 150-151, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27494671

RESUMO

Following an injury, the extracellular matrix (ECM) undergoes dramatic remodeling to facilitate tissue repair. In a new study, Lukjanenko and colleagues show how an age-associated change in this process affects the regenerative ability of muscle stem cells (MuSCs).


Assuntos
Matriz Extracelular/química , Nicho de Células-Tronco , Músculos , Mioblastos , Regeneração
5.
Nature ; 510(7505): 393-6, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24870234

RESUMO

A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G0 and an 'alert' phase we term G(Alert). Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G0 into G(Alert) and that signalling through the HGF receptor cMet is also necessary. We also identify G0-to-G(Alert) transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G(Alert) possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G(Alert) functions as an 'alerting' mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.


Assuntos
Ciclo Celular/fisiologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/citologia , Fase de Repouso do Ciclo Celular/fisiologia , Células Satélites de Músculo Esquelético/citologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Fase de Repouso do Ciclo Celular/genética , Células Satélites de Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/genética
6.
Nature ; 508(7495): 258-62, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717514

RESUMO

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.


Assuntos
Dieta , Nicotinamida N-Metiltransferase/deficiência , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/enzimologia , Obesidade/prevenção & controle , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Fígado Gorduroso , Técnicas de Silenciamento de Genes , Intolerância à Glucose , Transportador de Glucose Tipo 4/deficiência , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/genética , Obesidade/etiologia , Obesidade/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , S-Adenosilmetionina/metabolismo , Sirtuína 1/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Magreza/enzimologia , Magreza/metabolismo , Poliamina Oxidase
7.
Mol Endocrinol ; 28(6): 912-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694308

RESUMO

Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes.


Assuntos
Fatores de Transcrição Forkhead/genética , Gluconeogênese , Hepatócitos/metabolismo , Fígado/metabolismo , Proteases Específicas de Ubiquitina/fisiologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Glucose/biossíntese , Células HEK293 , Humanos , Fígado/citologia , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Transcrição Gênica , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
8.
Diabetes ; 63(5): 1519-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24458359

RESUMO

Hepatic ketogenesis plays an important role in catabolism of fatty acids during fasting along with dietary lipid overload, but the mechanisms regulating this process remain poorly understood. Here, we show that Cdc2-like kinase 2 (Clk2) suppresses fatty acid oxidation and ketone body production during diet-induced obesity. In lean mice, hepatic Clk2 protein is very low during fasting and strongly increased during feeding; however, in diet-induced obese mice, Clk2 protein remains elevated through both fed and fasted states. Liver-specific Clk2 knockout mice fed a high-fat diet exhibit increased fasting levels of blood ketone bodies, reduced respiratory exchange ratio, and increased gene expression of fatty acid oxidation and ketogenic pathways. This effect of Clk2 is cell-autonomous, because manipulation of Clk2 in hepatocytes controls genes and rates of fatty acid utilization. Clk2 phosphorylation of peroxisome proliferator-activated receptor γ coactivator (PGC-1α) disrupts its interaction with Mediator subunit 1, which leads to a suppression of PGC-1α activation of peroxisome proliferator-activated receptor α target genes in fatty acid oxidation and ketogenesis. These data demonstrate the importance of Clk2 in the regulation of fatty acid metabolism in vivo and suggest that inhibition of hepatic Clk2 could provide new therapies in the treatment of fatty liver disease.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Transcrição/genética
10.
Mol Cell ; 41(4): 471-9, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329884

RESUMO

Akt mediates important cellular decisions involved in growth, survival, and metabolism. The mechanisms by which Akt is phosphorylated and activated in response to growth factors or insulin have been extensively studied, but the molecular regulatory components and dynamics of Akt attenuation are poorly understood. Here we show that a downstream target of insulin-induced Akt activation, Clk2, triggers Akt dephosphorylation through the PP2A phosphatase complex. Clk2 phosphorylates the PP2A regulatory subunit B56ß (PPP2R5B, B'ß), which is a critical regulatory step in the assembly of the PP2A holoenzyme complex on Akt leading to dephosphorylation of both S473 and T308 Akt sites. Since Akt plays a pivotal role in cellular signaling, these results have important implications for our understanding of Akt regulation in many biological processes.


Assuntos
Insulina/metabolismo , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transfecção
11.
Genes Dev ; 24(13): 1403-17, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20595232

RESUMO

The sterol regulatory element-binding protein (SREBP) transcription factor family is a critical regulator of lipid and sterol homeostasis in eukaryotes. In mammals, SREBPs are highly active in the fed state to promote the expression of lipogenic and cholesterogenic genes and facilitate fat storage. During fasting, SREBP-dependent lipid/cholesterol synthesis is rapidly diminished in the mouse liver; however, the mechanism has remained incompletely understood. Moreover, the evolutionary conservation of fasting regulation of SREBP-dependent programs of gene expression and control of lipid homeostasis has been unclear. We demonstrate here a conserved role for orthologs of the NAD(+)-dependent deacetylase SIRT1 in metazoans in down-regulation of SREBP orthologs during fasting, resulting in inhibition of lipid synthesis and fat storage. Our data reveal that SIRT1 can directly deacetylate SREBP, and modulation of SIRT1 activity results in changes in SREBP ubiquitination, protein stability, and target gene expression. In addition, chemical activators of SIRT1 inhibit SREBP target gene expression in vitro and in vivo, correlating with decreased hepatic lipid and cholesterol levels and attenuated liver steatosis in diet-induced and genetically obese mice. We conclude that SIRT1 orthologs play a critical role in controlling SREBP-dependent gene regulation governing lipid/cholesterol homeostasis in metazoans in response to fasting cues. These findings may have important biomedical implications for the treatment of metabolic disorders associated with aberrant lipid/cholesterol homeostasis, including metabolic syndrome and atherosclerosis.


Assuntos
Regulação para Baixo , Jejum/fisiologia , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Acetilação , Animais , Benzamidas/farmacologia , Caenorhabditis elegans , Linhagem Celular , Colesterol/biossíntese , Regulação para Baixo/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lipídeos/biossíntese , Camundongos , Naftóis/farmacologia , Niacinamida/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores
12.
Cell Metab ; 11(1): 23-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20074525

RESUMO

Dynamic regulation of insulin signaling and metabolic gene expression is critical to nutrient homeostasis; dysregulation of these pathways is widely implicated in insulin resistance and other disease states. Though the metabolic effects of insulin are well established, the components linking insulin signal transduction to a metabolic response are not as well understood. Here, we show that Cdc2-like kinase 2 (Clk2) is an insulin-regulated suppressor of hepatic gluconeogenesis and glucose output. Clk2 protein levels and kinase activity are induced as part of the hepatic refeeding response by the insulin/Akt pathway. Clk2 directly phosphorylates the SR domain on PGC-1alpha, resulting in repression of gluconeogenic gene expression and hepatic glucose output. In addition, Clk2 is downregulated in db/db mice, and reintroduction of Clk2 largely corrects glycemia. Thus, we have identified a role for and regulation of the Clk2 kinase as a component of hepatic insulin signaling and glucose metabolism.


Assuntos
Gluconeogênese , Insulina/metabolismo , Fígado/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Adenoviridae/genética , Animais , Glicemia/metabolismo , Células Cultivadas , Ingestão de Alimentos , Técnicas de Transferência de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição
13.
Nat Med ; 15(11): 1307-11, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19838201

RESUMO

Type 2 diabetes is a complex disease that is marked by the dysfunction of glucose and lipid metabolism. Hepatic insulin resistance is especially pathogenic in type 2 diabetes, as it dysregulates fasting and postprandial glucose tolerance and promotes systemic dyslipidemia and nonalcoholic fatty liver disease. Mitochondrial dysfunction is closely associated with insulin resistance and might contribute to the progression of diabetes. Here we used previously generated mice with hepatic insulin resistance owing to the deletion of the genes encoding insulin receptor substrate-1 (Irs-1) and Irs-2 (referred to here as double-knockout (DKO) mice) to establish the molecular link between dysregulated insulin action and mitochondrial function. The expression of several forkhead box O1 (Foxo1) target genes increased in the DKO liver, including heme oxygenase-1 (Hmox1), which disrupts complex III and IV of the respiratory chain and lowers the NAD(+)/NADH ratio and ATP production. Although peroxisome proliferator-activated receptor-gamma coactivator-1alpha (Ppargc-1alpha) was also upregulated in DKO liver, it was acetylated and failed to promote compensatory mitochondrial biogenesis or function. Deletion of hepatic Foxo1 in DKO liver normalized the expression of Hmox1 and the NAD(+)/NADH ratio, reduced Ppargc-1alpha acetylation and restored mitochondrial oxidative metabolism and biogenesis. Thus, Foxo1 integrates insulin signaling with mitochondrial function, and inhibition of Foxo1 can improve hepatic metabolism during insulin resistance and the metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Insulina/metabolismo , Fígado/citologia , Mitocôndrias/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteínas Substratos do Receptor de Insulina/deficiência , Fígado/metabolismo , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mutação/genética , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
15.
J Biol Chem ; 284(8): 5148-57, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19103600

RESUMO

Metabolic and stress response gene regulation is crucial for the survival of an organism to a changing environment. Three key molecules that sense nutrients and broadly affect gene expression are the FoxO transcription factors, the transcriptional co-activator PGC-1alpha, and the dynamic post-translational modification, O-linked beta-N-acetylglucosamine (O-GlcNAc). Here we identify novel post-translational modifications of PGC-1alpha, including O-GlcNAc, and describe a novel mechanism for how PGC-1alpha co-activates transcription by FoxOs. In liver, in cultured cells, and in vitro with recombinant proteins, PGC-1alpha binds to O-GlcNAc transferase and targets the enzyme to FoxOs, resulting in their increased GlcNAcylation and increased transcriptional activity. Furthermore, glucose-enhanced activation of FoxO1 occurs via this PGC-1alpha-O-GlcNAc transferase-mediated GlcNAcylation. Therefore, one mechanism by which PGC-1alpha can serve as a co-activator of transcription is by targeting the O-GlcNAc transferase to increase GlcNAcylation of specific transcription factors important to nutrient/stress sensing and energy metabolism.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexos Multienzimáticos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Acilação/fisiologia , Linhagem Celular , Metabolismo Energético/fisiologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Proteínas de Choque Térmico/genética , Humanos , Complexos Multienzimáticos/genética , N-Acetilglucosaminiltransferases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética
16.
J Biol Chem ; 283(24): 16283-92, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18420577

RESUMO

FoxO proteins are key transcriptional regulators of nutrient homeostasis and stress response. The transcription factor FoxO1 activates expression of gluconeogenic, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and also activates the expression of the oxidative stress response enzymes catalase and manganese superoxide dismutase. Hormonal and stress-dependent regulation of FoxO1 via acetylation, ubiquitination, and phosphorylation, are well established, but FoxOs have not been studied in the context of the glucose-derived O-linked beta-N-acetylglucosamine (O-GlcNAc) modification. Here we show that O-GlcNAc on hepatic FoxO1 is increased in diabetes. Furthermore, O-GlcNAc regulates FoxO1 activation in response to glucose, resulting in the paradoxically increased expression of gluconeogenic genes while concomitantly inducing expression of genes encoding enzymes that detoxify reactive oxygen species. GlcNAcylation of FoxO provides a new mechanism for direct nutrient control of transcription to regulate metabolism and stress response through control of FoxO1 activity.


Assuntos
Acetilglucosamina/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Catalase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1 , Glucose-6-Fosfatase/metabolismo , Humanos , Modelos Biológicos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo
17.
FEBS Lett ; 582(1): 46-53, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18036349

RESUMO

Energy homeostasis in mammals is achieved through tight regulation of tissue-specific metabolic pathways that become dysregulated in metabolic diseases including diabetes and obesity. At the molecular level, main nutrient and hormonal signaling pathways impinge on expression of genes encoding for metabolic enzymes. Among the major components of this transcriptional circuitry are the PGC-1 alpha transcriptional complexes. An important regulatory mechanism of this complex is through acetylation and SIRT1-mediated lysine de-acetylation under low nutrient conditions. Activation of SIRT1 can mimic several metabolic aspects of calorie restriction that target selective nutrient utilization and mitochondrial oxidative function to regulate energy balance. Thus, understanding the PGC-1 alpha and SIRT1 pathways might have important implications for comprehending metabolic and age-associated diseases.


Assuntos
Adaptação Fisiológica , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA , Ratos , Sirtuína 1
18.
Nature ; 450(7170): 736-40, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046414

RESUMO

Transcriptional complexes that contain peroxisome-proliferator-activated receptor coactivator (PGC)-1alpha control mitochondrial oxidative function to maintain energy homeostasis in response to nutrient and hormonal signals. An important component in the energy and nutrient pathways is mammalian target of rapamycin (mTOR), a kinase that regulates cell growth, size and survival. However, it is unknown whether and how mTOR controls mitochondrial oxidative activities. Here we show that mTOR is necessary for the maintenance of mitochondrial oxidative function. In skeletal muscle tissues and cells, the mTOR inhibitor rapamycin decreased the gene expression of the mitochondrial transcriptional regulators PGC-1alpha, oestrogen-related receptor alpha and nuclear respiratory factors, resulting in a decrease in mitochondrial gene expression and oxygen consumption. Using computational genomics, we identified the transcription factor yin-yang 1 (YY1) as a common target of mTOR and PGC-1alpha. Knockdown of YY1 caused a significant decrease in mitochondrial gene expression and in respiration, and YY1 was required for rapamycin-dependent repression of those genes. Moreover, mTOR and raptor interacted with YY1, and inhibition of mTOR resulted in a failure of YY1 to interact with and be coactivated by PGC-1alpha. We have therefore identified a mechanism by which a nutrient sensor (mTOR) balances energy metabolism by means of the transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Transativadores/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , DNA Mitocondrial/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Complexos Multiproteicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Transcrição YY1/deficiência , Fator de Transcrição YY1/genética
19.
Proc Natl Acad Sci U S A ; 104(31): 12861-6, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17646659

RESUMO

In the fasted state, induction of hepatic glucose output and fatty acid oxidation is essential to sustain energetic balance. Production and oxidation of glucose and fatty acids by the liver are controlled through a complex network of transcriptional regulators. Among them, the transcriptional coactivator PGC-1alpha plays an important role in hepatic and systemic glucose and lipid metabolism. We have previously demonstrated that sirtuin 1 (SIRT1) regulates genes involved in gluconeogenesis through interaction and deacetylation of PGC-1alpha. Here, we show in vivo that hepatic SIRT1 is a factor in systemic and hepatic glucose, lipid, and cholesterol homeostasis. Knockdown of SIRT1 in liver caused mild hypoglycemia, increased systemic glucose and insulin sensitivity, and decreased glucose production. SIRT1 knockdown also decreased serum cholesterol and increased hepatic free fatty acid and cholesterol content. These metabolic phenotypes caused by SIRT1 knockdown tightly correlated with decreased expression of gluconeogenic, fatty acid oxidation and cholesterol degradation as well as efflux genes. Additionally, overexpression of SIRT1 reversed many of the changes caused by SIRT1 knockdown and depended on the presence of PGC-1alpha. Interestingly, most of the effects of SIRT1 were only apparent in the fasted state. Our results indicate that hepatic SIRT1 is an important factor in the regulation of glucose and lipid metabolism in response to nutrient deprivation. As these pathways are dysregulated in metabolic diseases, SIRT1 may be a potential therapeutic target to control hyperglycemia and hypercholesterolemia.


Assuntos
Jejum , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Sirtuínas/metabolismo , Animais , Regulação da Expressão Gênica , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Sirtuínas/deficiência , Sirtuínas/genética , Transativadores/deficiência , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição
20.
EMBO J ; 26(13): 3169-79, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17581637

RESUMO

A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Degeneração Neural/metabolismo , Sirtuínas/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Ratos , Resveratrol , Sirtuína 1 , Sirtuínas/genética , Estilbenos/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...