Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1366256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680531

RESUMO

Time around parturition is a stressful period for both bitches and their puppies. The use of probiotics has been proposed, e.g., in pigs, to improve health status of sows, their reproductive performances and in turn, the health and performance of their progeny. The objective of the present study was to evaluate the impact, on both dams and puppies, of a supplementation of bitches with the live yeast Saccharomyces cerevisiae var. boulardii CNCM I-1079 (SB-1079) during the second part of the gestation and the lactation period. A total of 36 bitches of medium and large-sized breeds were enrolled. They were divided into two groups, one of which received 1.3 × 109 colony forming units of live yeast per day. At dam's level, SB-1079 yeast shaped a different microbiota structure between the two groups just after whelping, impacted alpha diversity and some plasma metabolites related to energy metabolism. Regarding reproductive performances, SB-1079 improved gross energy of the colostrum (1.4 vs. 1.2 kcal of ME/g) as well as the concentration of protein in milk at Day 7 after parturition (10.4 vs. 7.6%). SB-1079 also reduced the odds of having low birth weight in the litter. At puppy's level, a modulation of immunometabolic phenotype is suggested by the observation of increased growth rates during the early pediatric period (i.e., between 21 and 56 days of life, 225 vs. 190%) and a decrease of the IL-8:IL-10 ratio after vaccination against rabies (4.2 vs. 16.9). Our findings suggest that SB-1079 supplementation during gestation and lactation has the potential to enhance health of bitches and in turn health of puppies through maternal programming.

2.
Sci Rep ; 13(1): 14717, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679393

RESUMO

Low birth weight puppies present an increased risk of neonatal mortality, morbidity, and some long-term health issues. Yet it has not been investigated if those alterations could be linked to the gut microbiota composition and evolution. 57 puppies were weighed at birth and rectal swabs were performed at 5 time points from birth to 28 days of age. Puppies were grouped into three groups based on their birth weight: low birth weight (LBW), normal birth weight (NBW) and high birth weight (HBW). 16S rRNA gene sequencing was used to highlight differences in the fecal microbiota. During the first three weeks, the relative abundance of facultative anaerobic bacteria such as E. coli, C. perfringens and Tyzzerella was higher in LBW feces, but they catch back with the other groups afterwards. HBW puppies showed higher abundances of Faecalibacterium and Bacteroides during the neonatal period, suggesting an earlier maturation of their microbiota. The results of this study suggest that birth weight impact the initial establishment of the gut microbiota in puppies. Innovative strategies would be desired to deal with altered gut microbiota in low birth weight puppies aiming to improve their survival and long term health.


Assuntos
Canidae , Microbioma Gastrointestinal , Microbiota , Animais , Cães , Microbioma Gastrointestinal/genética , Peso ao Nascer , Escherichia coli/genética , RNA Ribossômico 16S/genética , Clostridium perfringens
3.
Front Microbiol ; 13: 981747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046017

RESUMO

In the One Health concept, the use of beneficial bacteria to form positive biofilms that prevent the settlement of undesirable bacteria is a promising solution to limit the use of antimicrobials on farms. However, there is a lack of field studies reporting the onset of these beneficial bacteria after application and the effects on autochthonous surface microbiota. In the study reported here, the inner surfaces of commercial broiler chicken houses were treated or not with a bacterial consortium composed of Bacillus spp. and Pediococcus spp. strains, able to form covering biofilms in different laboratory models. Preinstalled coupons were sampled over time to capture microbial biofilm dynamics on-farm surfaces. The results showed that the bacterial consortium can establish on the farm surfaces, modulate microbial communities, and limit the implantation of Enterobacteriaceae and Enterococcaceae, two families containing potential pathogens.

4.
J Anim Sci Biotechnol ; 12(1): 38, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33685507

RESUMO

BACKGROUND: The objective was to study the effect of hydroxychloride trace minerals (HTM) on growth performance, carcass quality and gut microbiota of broiler chickens in comparison to sulphate trace minerals (STM). In total 1440 male Ross 308 day-old chicks were divided into 12 replicate pens with 30 birds each per treatment. Four different treatments were tested according to a 2 × 2 factorial study design, where the animals received a three phase diet containing either inorganic Zn from sulphates or Zn from HTM in high (80 mg/kg Zn) or low Zn dosage (20 mg/kg Zn). In all treatments 15 mg/kg Cu was added from the same mineral source as the Zn. Body weight and feed intake were measured on day 0, 10, 27 and 34, while carcass and breast meat yields were measured at the end of the study (day 34). In addition, high-throughput sequencing analysis was performed in digesta samples from ileum and cecum to study the gut microbiome (day 34). RESULTS: The results showed an improved (P < 0.05) body weight of broiler chickens fed HTM, regardless of Zn level, on day 27, while on day 34 this effect remained as a tendency (P = 0.0542). In the overall study period, birds fed HTM had a higher (P < 0.05) average daily gain and average daily feed intake when compared to birds fed STM. The mineral source did not affect the carcass characteristics, however, feeding 80 mg/kg Zn resulted in a significantly higher (P = 0.0171) breast meat yield, regardless of source. High-throughput sequencing analysis of the microbiota revealed a higher microbial diversity in the ileum and cecum of HTM fed birds compared to STM fed birds. Taxonomical differences were mainly found in the cecum, specifically between the group fed high and low Zn levels from HTM. This correlated with the mineral contents observed in the cecal digesta. Comparing both groups fed 80 mg/kg Zn, the HTM group had more Streptococcaceae, Streptococcus, Clostridia, Weissella and Leuconostocaceae compared to the STM group. CONCLUSIONS: HTM improved growth performance of broiler chickens; and the source and level of Zn modulated the gut microbiota communities in broilers differentially.

5.
Microorganisms ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35056451

RESUMO

Little information about biofilm microbial communities on the surface of livestock buildings is available yet. While these spatially organized communities proliferate in close contact with animals and can harbor undesirable microorganisms, no standardized methods have been described to sample them non-destructively. We propose a reproducible coupon-based capture method associated with a set of complementary ex-situ analysis tools to describe the major features of those communities. To demonstrate the biofilm dynamics in a pig farm building, we analyzed the coupons on polymeric and metallic materials, as representative of these environments, over 4 weeks. Confocal laser scanning microscopy (CLSM) revealed a rapid coverage of the coupons with a thick layer of biological material and the existence of dispersed clusters of active metabolic microorganisms. After detaching the cells from the coupons, counts to quantify the CFU/cm2 were done with high reproducibility. High-throughput sequencing of the 16S rRNA V3-V4 region shows bacterial diversity profiles in accordance with reported bacteria diversity in pig intestinal ecosystems and reveals differences between materials. The coupon-based methodology allows us to deepen our knowledge on biofilm structure and composition on the surface of a pig farm and opens the door for application in different types of livestock buildings.

6.
Appl Microbiol Biotechnol ; 104(18): 8007-8023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789745

RESUMO

White spot syndrome virus (WSSV) is one of the most virulent pathogens afflicting shrimp farming. Understanding its influence on shrimp intestinal microbiota is paramount for the advancement of aquaculture, since gut dysbiosis can negatively impact shrimp development, physiology, and immunological response. Thereupon, the data presented herein assesses the influence of WSSV infection and different rearing systems on the intestinal microbiota of Penaeus vannamei. Our study aimed to describe and correlate the composition of shrimp (Penaeus vannamei) gut microbiota, when reared in biofloc and clear seawater, before and (48 h) after WSSV experimental infection. Shrimp were kept in two different systems (biofloc and clear seawater) and experimentally infected with WSSV. Intestine and water samples were characterized by 16S rRNA gene sequencing, before and after viral infection. We observed (i) WSSV induced higher mortality among shrimp reared in biofloc; (ii) WSSV led to a loss of intestinal microbiota heterogeneity, at the genus level, in shrimp kept in clear seawater; (iii) there was a prevalence of Cetobacterium and Bacillus in the intestine of shrimp from both systems; (iv) WSSV did not cause significant changes in intestinal microbiota diversity or richness; (v) regardless of the type of system and time of infection, intestinal microbiota was dissimilar to that of the surrounding water, despite being influenced by the type of system. Therefore, WSSV infection leads to punctual dysbiotic changes in shrimp microbiota, although the virus is sufficiently virulent to cause high mortalities even in well-managed systems, such as a balanced experimental biofloc system. KEY POINTS: • WSSV infection leads to a perturbed gut microbiota in shrimp. • WSSV infection greater impacts microbiota of shrimp reared in CSW than those in BFT. • WSSV infection caused higher mortality levels in shrimp reared in BFT than in CSW. • Rearing system influences shrimp gut microbiota composition. Graphical abstract.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Aquicultura , RNA Ribossômico 16S/genética , Água do Mar
7.
Sci Rep ; 10(1): 5254, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210245

RESUMO

Following a single blind, cross-over and non-randomized design we investigated the effect of 7-day use of chlorhexidine (CHX) mouthwash on the salivary microbiome as well as several saliva and plasma biomarkers in 36 healthy individuals. They rinsed their mouth (for 1 min) twice a day for seven days with a placebo mouthwash and then repeated this protocol with CHX mouthwash for a further seven days. Saliva and blood samples were taken at the end of each treatment to analyse the abundance and diversity of oral bacteria, and pH, lactate, glucose, nitrate and nitrite concentrations. CHX significantly increased the abundance of Firmicutes and Proteobacteria, and reduced the content of Bacteroidetes, TM7, SR1 and Fusobacteria. This shift was associated with a significant decrease in saliva pH and buffering capacity, accompanied by an increase in saliva lactate and glucose levels. Lower saliva and plasma nitrite concentrations were found after using CHX, followed by a trend of increased systolic blood pressure. Overall, this study demonstrates that mouthwash containing CHX is associated with a major shift in the salivary microbiome, leading to more acidic conditions and lower nitrite availability in healthy individuals.


Assuntos
Clorexidina/farmacologia , Microbiota/efeitos dos fármacos , Boca/microbiologia , Antissépticos Bucais/farmacologia , Saliva/microbiologia , Adulto , Biomarcadores , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , Feminino , Glucose/análise , Humanos , Concentração de Íons de Hidrogênio , Lactatos/análise , Masculino , Nitratos/análise , Nitratos/sangue , Nitritos/análise , Nitritos/sangue , Saliva/química , Método Simples-Cego , Especificidade da Espécie , Adulto Jovem
8.
Front Microbiol ; 10: 2243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611864

RESUMO

The aim of this study was to assess the effect of the transfer from freshwater to seawater on the distal intestinal bacterial communities of Atlantic salmon (Salmo salar L.) and to evaluate the effect of dietary inclusion of Pediococcus acidilactici MA18/5M (at 1.19 × 106 CFU/g). In this context, fish health and antiviral response were also investigated. A 12-week feeding trial was conducted in a flow-through rearing system involving 6 weeks in freshwater and 6 weeks in seawater. Fish received a control and probiotic diet. The composition of the salmon gut bacterial communities was determined by high-throughput sequencing of digesta and mucosa samples from both the freshwater and seawater stage. The main phyla detected during both freshwater and seawater stages were Firmicutes, Proteobacteria, Fusobacteria, and Actinobacteria. Significant differences were observed between the intestinal microbiota in the digesta and the mucosa. Both probiotic supplementation and the seawater transfer (SWT) had a substantial impact on the microbial communities, with most pronounced changes detected in the mucosal communities after SWT. This last finding together with a significantly higher antiviral response (mx-1 and tlr3 gene expression) in the distal intestine of fish fed the probiotic diet suggest a causal link between the microbiota modulation and activation of antiviral response. Feeding probiotics during the freshwater stage did not significantly increase survival after infectious pancreatic necrosis virus (IPNV) challenge after SWT, although higher survival was observed in one out of two replicate challenge tanks. In conclusion, this study demonstrated that both dietary probiotic supplementation and transfer from freshwater to seawater have an important role in modulating the bacterial communities in the distal intestine of Atlantic salmon. Furthermore, supplementation of the diet with P. acidilactici MA18/5M can modulate antiviral response.

9.
Free Radic Biol Med ; 138: 63-72, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31082507

RESUMO

Vegetarian diets are commonly associated with lower blood pressure levels. This has been related to greater consumption of inorganic nitrate, since vegetables are the main source of this anion. Dietary nitrate is reduced to nitrite by commensal bacteria in the mouth, which in turn leads to increased circulatory nitrite availability. Nitrite can form nitric oxide by several pathways promoting a reduction in the vascular tone and lower blood pressure. This study tested whether vegetarians have higher concentrations of nitrite in saliva and plasma, and lower blood pressure and resting metabolic rate (RMR), due to higher intakes of nitrate, compared to omnivores. Following a non-randomized, cross-over and single-blinded design we measured dietary nitrate intake, blood pressure and RMR in young and healthy vegetarians (n = 22) and omnivores (n = 19) with similar characteristics after using placebo or antibacterial mouthwash for a week to inhibit oral bacteria. Additionally, we analyzed salivary and plasma nitrate and nitrite concentrations, as well as the oral nitrate-reduction rate and oral microbiome in both groups. Dietary nitrate intake in vegetarians (97 ±â€¯79 mg/day) was not statistically different (P > 0.05) to omnivores (78 ±â€¯47 mg/day). Salivary and plasma nitrate and nitrite concentrations were similar after placebo mouthwash in both groups (P > 0.05). The oral nitrate-reducing capacity, abundance of oral bacterial species, blood pressure and RMR were also similar between vegetarians and omnivores (P > 0.05). Antibacterial mouthwash significantly decreased abundance of oral nitrate-reducing bacterial species in vegetarians (_16.9%; P < 0.001) and omnivores (_17.4%; P < 0.001), which in turn led to a significant reduction of the oral nitrate-reducing capacity in vegetarians (-78%; P < 0.001) and omnivores (-85%; P < 0.001). However, this did not lead to a significant increase in blood pressure and RMR in either groups (P > 0.05). These findings suggest that vegetarian diets may not alter nitrate and nitrite homeostasis, or the oral microbiome, compared to an omnivore diet. Additionally, inhibition of oral nitrite synthesis for a week with antibacterial mouthwash did not cause a significant raise in blood pressure and RMR in healthy, young individuals independent of diet.


Assuntos
Metabolismo Basal/fisiologia , Pressão Sanguínea/fisiologia , Dieta/métodos , Nitratos/metabolismo , Nitritos/metabolismo , Vegetarianos , Adolescente , Adulto , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Pessoa de Meia-Idade , Boca/metabolismo , Boca/microbiologia , Antissépticos Bucais/farmacologia , Óxido Nítrico/metabolismo , Oxirredução , Saliva/química , Saliva/microbiologia , Verduras/química
10.
J Clin Gastroenterol ; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017: S50-S56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864068

RESUMO

An increasing number of studies has shown that dietary probiotics exert beneficial health effects in both humans and animals. It is well established that gut microbiota play a pivotal role in regulating host metabolism, and a growing number of studies has elucidated that probiotics positively interfere with gut microbiota. Accumulating evidence shows that probiotics, through their metabolic activity, produce metabolites that in turn contribute to positively affect host physiology. For these reasons, probiotics have shown significant potential as a therapeutic tool for a diversity of diseases, but the mechanisms through which probiotics act has not been fully elucidated yet. The goal of this review was to provide evidence on the effects of probiotics on gut microbiota changes associated with host metabolic variations, specifically focusing on feed intake and lipid and glucose metabolism. In addition, we review probiotic interaction with the gut microbiota. The information collected here will give further insight into the effects of probiotics on the gut microbiota and their action on metabolite release, energy metabolism, and appetite. This information will help to improve knowledge to find better probiotic therapeutic strategies for obesity and eating disorders.


Assuntos
Regulação do Apetite/fisiologia , Glicemia/metabolismo , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos/fisiologia , Probióticos/farmacologia , Animais , Metabolismo Energético , Humanos
11.
Microb Ecol ; 76(4): 1075, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29744531

RESUMO

The original version of this article unfortunately contained mistakes in Authors First name/Family name order. Please refer to this paper as Gioacchini et al. and not as Giorgia et al.

12.
Microb Ecol ; 76(4): 1063-1074, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29616281

RESUMO

In the present study, Nile tilapia Oreochromis niloticus was used as experimental model to study the molecular effects of a new probiotic preparation, Lactogen 13 (Lactobacillus rhamnosus IMC 501® encapsulated with vegetable fat matrices by spray chilling and further indicated as probiotic microgranules), on growth and appetite during larval development. Probiotic microgranules were administered for 30 days to tilapia larvae starting from first feeding. Molecular analysis using high-throughput sequencing revealed that the probiotic could populate the gastrointestinal tract and modulate the microbial communities by significantly increasing the proportion of Lactobacillus as well as reducing the proportion of potential pathogens such as members of the Family Microbacteriaceae, Legionellaceae, and Weeksellaceae. Morphometric analysis evidenced that body weight and total length significantly increased after probiotic treatment. This increase coincided with the modulation of genes belonging to the insulin-like growth factors (igfs) system and genes involved on myogenesis, such as myogenin, and myogenic differentiation (myod). Alongside the improvement of growth, an increase of feed intake was evidenced at 40 days post-fertilization (dpf) in treated larvae. Gene codifying for signals belonging to the most prominent systems involved in appetite regulation, such as neuropeptide y (npy), agouti-related protein (agrp), leptin, and ghrelin were significantly modulated. These results support the hypothesis that gastrointestinal (GI) microbiota changes due to probiotic administration modulate growth and appetite control, activating the endocrine system of tilapia larvae.


Assuntos
Apetite , Ciclídeos/crescimento & desenvolvimento , Sistema Endócrino/efeitos dos fármacos , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus/química , Desenvolvimento Muscular , Probióticos/farmacologia , Ração Animal/análise , Animais , Apetite/efeitos dos fármacos , Aquicultura , Ciclídeos/fisiologia , Dieta/veterinária , Sistema Endócrino/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Sci Rep ; 7(1): 5512, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717234

RESUMO

In the present study, we explored whether dietary lipid content influences the gut microbiome in adult zebrafish. Diets containing three different lipid levels (high [HFD], medium [MFD], and low [LFD]) were administered with or without the supplementation of Lactobacillus rhamnosus (P) to zebrafish in order to explore how the dietary lipid content may influence the gut microbiome. Dietary lipid content shifted the gut microbiome structure. The addition of L. rhamnosus in the diets, induced transcriptional reduction of orexigenic genes, upregulation of anorexigenic genes, and transcriptional decrease of genes involved in cholesterol and triglyceride (TAG) metabolism, concomitantly with lower content of cholesterol and TAG. Probiotic feeding also decreased nesfatin-1 peptide in HFD-P and attenuated weight gain in HFD-P and MFD-P fed zebrafish, but not in LFD-P group. Intestinal ultrastructure was not affected by dietary fat level or probiotic inclusion. In conclusion, these findings underline the role of fat content in the diet in altering gut microbiota community by shifting phylotype composition and highlight the potential of probiotics to attenuate high-fat diet-related metabolic disorder.


Assuntos
Gorduras na Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Lacticaseibacillus rhamnosus/fisiologia , Obesidade/prevenção & controle , Probióticos/farmacologia , Peixe-Zebra/metabolismo , Animais , Apetite/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Feminino , Intestinos/patologia , Intestinos/ultraestrutura , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas , Obesidade/veterinária , Análise de Componente Principal , Probióticos/uso terapêutico , Triglicerídeos/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Sci Rep ; 6: 30893, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485205

RESUMO

Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Salmo salar/microbiologia , Animais , Bactérias/classificação , RNA Ribossômico 16S/genética , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento
15.
Sci Rep ; 6: 18061, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26727958

RESUMO

The gut microbiota regulates metabolic pathways that modulate the physiological state of hunger or satiety. Nutrients in the gut stimulate the release of several appetite modulators acting at central and peripheral levels to mediate appetite and glucose metabolism. After an eight-day exposure of zebrafish larvae to probiotic Lactobacillus rhamnosus, high-throughput sequence analysis evidenced the ability of the probiotic to modulate the microbial composition of the gastrointestinal tract. These changes were associated with a down-regulation and up-regulation of larval orexigenic and anorexigenic genes, respectively, an up-regulation of genes related to glucose level reduction and concomitantly reduced appetite and body glucose level. BODIPY-FL-pentanoic-acid staining revealed higher short chain fatty acids levels in the intestine of treated larvae. These results underline the capability of the probiotic to modulate the gut microbiota community and provides insight into how the probiotic interacts to regulate a novel gene network involved in glucose metabolism and appetite control, suggesting a possible role for L. rhamnosus in the treatment of impaired glucose tolerance and food intake disorders by gut microbiota manipulation.


Assuntos
Apetite , Glucose/metabolismo , Probióticos/administração & dosagem , Peixe-Zebra/fisiologia , Animais , Ácidos Graxos/metabolismo , Absorção Gastrointestinal , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/ultraestrutura , Expressão Gênica , Larva/genética , Larva/metabolismo
16.
Sci Rep ; 5: 9336, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25822072

RESUMO

The microbiome plays an important role in lipid metabolism but how the introduction of probiotic communities affects host lipid metabolism is poorly understood. Using a multidisciplinary approach we addressed this knowledge gap using the zebrafish model by coupling high-throughput sequencing with biochemical, molecular and morphological analysis to evaluate the changes in the intestine. Analysis of bacterial 16S libraries revealed that Lactobacillus rhamnosus was able to modulate the gut microbiome of zebrafish larvae, elevating the abundance of Firmicutes sequences and reducing the abundance of Actinobacteria. The gut microbiome changes modulated host lipid processing by inducing transcriptional down-regulation of genes involved in cholesterol and triglycerides metabolism (fit2, agpat4, dgat2, mgll, hnf4α, scap, and cck) concomitantly decreasing total body cholesterol and triglyceride content and increasing fatty acid levels. L. rhamnosus treatment also increased microvilli and enterocyte lengths and decreased lipid droplet size in the intestinal epithelium. These changes resulted in elevated zebrafish larval growth. This integrated system investigation demonstrates probiotic modulation of the gut microbiome, highlights a novel gene network involved in lipid metabolism, provides an insight into how the microbiome regulates molecules involved in lipid metabolism, and reveals a new potential role for L. rhamnosus in the treatment of lipid disorders.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Metabolismo dos Lipídeos/genética , Transcrição Gênica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Biodiversidade , Colesterol/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Metagenoma , Probióticos , Triglicerídeos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...