Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2401458121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809711

RESUMO

Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two ß-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.


Assuntos
Amiloide , Insulina , Humanos , Amiloide/química , Amiloide/metabolismo , Insulina/química , Insulina/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Conformação Proteica , Espectroscopia de Ressonância Magnética
2.
J Am Chem Soc ; 146(20): 13783-13796, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723619

RESUMO

The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of ß-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended ß-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Conformação Proteica
3.
J Struct Biol X ; 6: 100069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924280

RESUMO

AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the ß-sheets identified in the NMR experiments are similar to the ß-sheets found in the cryo-EM study, with the exception of amino acids 33-42. These residues cannot be assigned by solid-state NMR, while they adopt a stable ß-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33-42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.

4.
Nat Commun ; 12(1): 6697, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795272

RESUMO

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


Assuntos
Proteínas de Choque Térmico/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Dicroísmo Circular , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espectrometria de Massas em Tandem , Temperatura
5.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223436

RESUMO

The persistence of high concentrations of beta-2-microglobulin (ß2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of ß2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length ß2M (ß2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6ß2m and ΔN10ß2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT). For this aim, the tested solutions were prepared via the equilibrium microdialysis approach. Spectroscopic analysis of the obtained samples allowed us to detect one binding mode (type) of ThT interaction with all the studied variants of ß2M amyloid fibrils with affinity ~104 M-1. This interaction can be explained by the dye molecules incorporation into the grooves that were formed by the amino acids side chains of amyloid protofibrils along the long axis of the fibrils. The decrease in the affinity and stoichiometry of the dye interaction with ß2M fibrils, as well as in the fluorescence quantum yield and lifetime of the bound dye upon the shortening of the protein amino acid sequence were shown. The observed differences in the ThT-ß2M fibrils binding parameters and characteristics of the bound dye allowed to prove not only the difference of the ΔN10ß2m fibrils from other ß2M fibrils (that can be detected visually, for example, by transmission electron microscopy (TEM), but also the differences between ß2m and ΔN6ß2m fibrils (that can not be unequivocally confirmed by other approaches). These results prove an essential role of N-terminal amino acids of the protein in the formation of the ß2M amyloid fibrils. Information about amyloidogenic protein sequences can be claimed in the development of ways to inhibit ß2M fibrillogenesis for the treatment of dialysis-related amyloidosis.


Assuntos
Amiloide/química , Amiloide/metabolismo , Benzotiazóis , Corantes Fluorescentes , Imagem Molecular , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Amiloide/ultraestrutura , Amiloidose/metabolismo , Amiloidose/patologia , Dicroísmo Circular , Humanos , Cinética , Espectrometria de Massas , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Espectrofotometria Ultravioleta
6.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142878

RESUMO

In this work, α-synuclein amyloid fibrils-the formation of which is a biomarker of Parkinson's disease-were investigated using the fluorescent probe thioflavin T (ThT). The experimental conditions of protein fibrillogenesis were chosen so that a sufficient number of continuous measurements could be performed to characterize and analyze all stages of this process. The reproducibility of fibrillogenesis and the structure of the obtained aggregates (which is a critical point for further investigation) were proven using a wide range of physical-chemical methods. For the determination of ThT-α-synuclein amyloid fibril binding parameters, the sample and reference solutions were prepared using equilibrium microdialysis. By utilizing absorption spectroscopy of these solutions, the ThT-fibrils binding mode with a binding constant of about 104 M-1 and stoichiometry of ThT per protein molecule of about 1:8 was observed. Fluorescence spectroscopy of the same solutions with the subsequent correction of the recorded fluorescence intensity on the primary inner filter effect allowed us to determine another mode of ThT binding to fibrils, with a binding constant of about 106 M-1 and stoichiometry of about 1:2500. Analysis of the photophysical characteristics of the dye molecules bound to the sites of different binding modes allowed us to assume the possible localization of these sites. The obtained differences in the ThT binding parameters to the amyloid fibrils formed from α-synuclein and other amyloidogenic proteins, as well as in the photophysical characteristics of the bound dye, confirmed the hypothesis of amyloid fibril polymorphism.


Assuntos
Amiloide/química , alfa-Sinucleína/química , Benzotiazóis/química , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Microdiálise , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Soluções , Espectrometria de Fluorescência , Termodinâmica , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...