Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836621

RESUMO

A theoretical analysis of the potential inhibition of human sucrase-isomaltase (SI) by flavonoids was carried out with the aim of identifying potential candidates for an alternative treatment of type 2 diabetes. Two compounds from maize silks, maysin and luteolin, were selected to be studied with the structure-based density functional theory (DFT), molecular docking (MDock), and molecular dynamics (MD) approaches. The docking score and MD simulations suggested that the compounds maysin and luteolin presented higher binding affinities in N-terminal sucrase-isomaltase (NtSI) than in C-terminal sucrase-isomaltase (CtSI). The reactivity parameters, such as chemical hardness (η) and chemical potential (µ), of the ligands, as well as of the active site amino acids of the NtSI, were calculated by the meta-GGA M06 functional in combination with the 6-31G(d) basis set. The lower value of chemical hardness calculated for the maysin molecule indicated that this might interact more easily with the active site of NtSI, in comparison with the values of the acarbose and luteolin structures. Additionally, a possible oxidative process was proposed through the quantum chemical calculations of the electronic charge transfer values (∆N) between the active site amino acids of the NtSI and the ligands. In addition, maysin displayed a higher ability to generate more oxidative damage in the NtSI active site. Our results suggest that maysin and luteolin can be used to develop novel α-glucosidase inhibitors via NtSI inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Zea mays/metabolismo , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Oligo-1,6-Glucosidase/química , Sacarase/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Aminoácidos
2.
Biomedica ; 43(Sp. 1): 156-169, 2023 08 31.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37721910

RESUMO

INTRODUCTION: Fungal genera Alternaria and Fusarium include human and plant pathogenic species. Several antifungals have been used for their control, but excessive use has contributed to resistance development in pathogens. An alternative to searching for and developing new antifungal agents is using essential oils and their main components, which have biological activities of interest in medicine and food production. OBJECTIVE: To evaluate in vitro and in silico the antifungal activities of terpenoids against Alternaria alternata and Fusarium oxysporum. MATERIALS AND METHODS: The minimum inhibitory concentration and minimum fungicidal concentration values of 27 constituents of essential oils used against Alternaria alternata and Fusarium oxysporum were evaluated in vitro. In addition, using genetic algorithms, quantitative models of the structure-activity relationship were used to identify the structural and physicochemical properties related to antifungal activity. RESULTS: The evaluated compounds proved to be effective antifungals. Thymol was the most active with a minimum inhibitory concentration of 91.6 ± 28.8 µg/ml for A. alternata and F. oxysporum. Quantitative structure-activity relationship models revealed the octanolwater cleavage ratio as the molecular property, and the phenols as the main functional group contributing to antifungal activity. CONCLUSION: Terpenoids exhibit relevant antifungal activities that should be incorporated into the study of medicinal chemistry. Inclusion of in silico assays in the in vitro evaluation is a valuable tool in the search for and rational design of terpene derivatives as new potential antifungal agents.


Introducción: Los géneros Alternaria y Fusarium contienen especies patógenas para los humanos y los cultivos. Para su control, se han utilizado diversos antifúngicos. Sin embargo, su uso desmedido ha contribuido al desarrollo de agentes patógenos resistentes. Una alternativa para buscar y desarrollar nuevos agentes antimicóticos son los aceites esenciales y sus componentes principales, los cuales poseen diversas actividades biológicas de interés para la medicina y en la preservación de alimentos. Objetivo: Evaluar in vitro e in silico las actividades antifúngicas de terpenoides contra Alternaria alternata y Fusarium oxysporum. Materiales y métodos: Se evaluaron in vitro las concentraciones inhibitorias mínimas y las concentraciones fungicidas mínimas de 27 constituyentes de aceites esenciales contra A. alternata y F. oxysporum. Además, mediante algoritmos genéticos, se crearon modelos cuantitativos de la relación estructura-actividad para determinar las propiedades estructurales y fisicoquímicas relacionadas con la actividad antifúngica. Resultados: Los compuestos evaluados mostraron ser antifúngicos activos. El timol fue el compuesto con mayor actividad, con un valor de concentración inhibitoria mínima de 91.6 ± 28.8 µg/ml, tanto para Alternaria alternata como para Fusarium oxysporum. Los modelos cuantitativos de la relación estructura-actividad incluyeron la avidez por los lípidos y los fenoles como los principales grupos funcionales que contribuyen en la actividad antifúngica. Conclusión: Los terpenoides poseen actividades antifúngicas relevantes para ser incorporados en el estudio de la química medicinal. La inclusión de pruebas in silico a la evaluación in vitro es una herramienta útil para la búsqueda y el diseño racional de derivados terpénicos como posibles agentes antifúngicos.


Assuntos
Fusarium , Óleos Voláteis , Humanos , Relação Quantitativa Estrutura-Atividade , Antifúngicos/farmacologia , Alternaria , Terpenos
3.
Biomédica (Bogotá) ; 43(Supl. 1): 156-169, ago. 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1533896

RESUMO

Introducción. Los géneros Alternaria y Fusarium contienen especies patógenas para los humanos y los cultivos. Para su control, se han utilizado diversos antifúngicos. Sin embargo, su uso desmedido ha contribuido al desarrollo de agentes patógenos resistentes. Una alternativa para buscar y desarrollar nuevos agentes antimicóticos son los aceites esenciales y sus componentes principales, los cuales poseen diversas actividades biológicas de interés para la medicina y en la preservación de alimentos. Objetivo. Evaluar in vitro e in silico las actividades antifúngicas de terpenoides contra Alternaria alternata y Fusarium oxysporum. Materiales y métodos. Se evaluaron in vitro las concentraciones inhibitorias mínimas y las concentraciones fungicidas mínimas de 27 constituyentes de aceites esenciales contra A. alternata y F. oxysporum. Además, mediante algoritmos genéticos, se crearon modelos cuantitativos de la relación estructura-actividad para determinar las propiedades estructurales y fisicoquímicas relacionadas con la actividad antifúngica. Resultados. Los compuestos evaluados mostraron ser antifúngicos activos. El timol fue el compuesto con mayor actividad, con un valor de concentración inhibitoria mínima de 91.6 ± 28.8 pg/ml, tanto para Alternarla alternata como para Fusarium oxysporum. Los modelos cuantitativos de la relación estructura-actividad incluyeron la avidez por los lípidos y los fenoles como los principales grupos funcionales que contribuyen en la actividad antifúngica. Conclusión. Los terpenoides poseen actividades antifúngicas relevantes para ser incorporados en el estudio de la química medicinal. La inclusión de pruebas in silico a la evaluación in vitro es una herramienta útil para la búsqueda y el diseño racional de derivados terpénicos como posibles agentes antifúngicos.


Introduction. Fungal genera Alternaría and Fusarium include human and plant pathogenic species. Several antifungals have been used for their control, hut excessive use has contributed to resistance development in pathogens. An alternative to searching for and developing new antifungal agents is using essential oils and their main components, which have biological activities of interest in medicine and food production. Objective. To evaluate in vitro and in silico the antifungal activities of terpenoids against Alternaria alternata and Fusarium oxysporum. Materials and methods. The minimum inhibitory concentration and minimum fungicidal concentration values of 27 constituents of essential oils used against Alternaria alternata and Fusarium oxysporum were evaluated in vitro. In addition, using genetic algorithms, quantitative models of the structure-activity relationship were used to identify the structural and physicochemical properties related to antifungal activity. Results. The evaluated compounds proved to be effective antifungals. Thymol was the most active with a minimum inhibitory concentration of 91.6 ± 28.8 pg/ml for A. alternata and F. oxysporum. Quantitative structure-activity relationship models revealed the octanol-water cleavage ratio as the molecular property, and the phenols as the main functional group contributing to antifungal activity. Conclusion. Terpenoids exhibit relevant antifungal activities that should be incorporated into the study of medicinal chemistry. Inclusion of in silico assays in the in vitro evaluation is a valuable tool in the search for and rational design of terpene derivatives as new potential antifungal agents.


Assuntos
Óleos Voláteis , Alternaria , Fusarium , Relação Quantitativa Estrutura-Atividade
4.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985426

RESUMO

Aedes aegypti is a vector for the arbovirus responsible for yellow fever, Zika and Chikungunya virus. Essential oils and their constituents are known for their larvicidal properties and are strong candidates for mosquito control. This work aimed to develop a quantitative structure-activity study and molecular screening for the search and design of new larvicidal agents. Twenty-five monoterpenes with previously evaluated larvicidal activity were built and optimized using computational tools. QSAR models were constructed through genetic algorithms from the larvicidal activity and the calculation of theoretical descriptors for each molecule. Docking studies on acetylcholinesterase (AChE) and sterol carrier protein (SCP-2) were also carried out. Results demonstrate that the epoxide groups in the structure of terpenes hinder larvicidal activity, while lipophilicity plays an important role in enhancing biological activity. Larvicidal activity correlates with the interaction of the sterol-carrier protein. Of the 25 compounds evaluated, carvacrol showed the highest larvicidal activity with an LC50 of 8.8 µg/mL. The information included in this work contributes to describing the molecular, topological, and quantum mechanical properties related to the larvicidal activity of monoterpenes and their derivatives.


Assuntos
Aedes , Inseticidas , Óleos Voláteis , Infecção por Zika virus , Zika virus , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Terpenos , Relação Quantitativa Estrutura-Atividade , Acetilcolinesterase , Inseticidas/farmacologia , Inseticidas/química , Monoterpenos , Larva , Proteínas de Transporte , Esteróis
5.
Front Chem ; 10: 907556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991614

RESUMO

New organic molecules containing five different compounds, commonly called p-linkers, located between the triphenylamine units, were theoretically designed and analyzed in order to be proposed as new hole transport materials (HTMs) in perovskite solar cells, in total ten new molecules were analyzed. The electronic, optical and hole transport properties were determined, similarly, the relationship of these properties with their molecular structure was also investigated by Density Functional Theory (DFT) and Density Functional Tight Binding (DFTB) calculations. Eight of the ten analyzed compounds exhibited the main absorption band out of the visible region; therefore these compounds did not present an overlap with the absorption spectra of the typical methylammonium lead iodide (MAPI) hybrid-perovskite. The results showed that the Highest occupied molecular orbital (HOMO) levels of the compounds are higher than the perovskite HOMO level, and in some cases these are even higher than the Spiro-OMeTAD HOMO. The calculated electronic couplings and the reorganization energy values provided useful information in order to determine if the systems were hole or electron transport materials.

6.
Molecules ; 23(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966272

RESUMO

Anthocyanins are water-soluble phenolic pigments. However, their poor solubility in lipidic media limits their use. This hurdle can be overcome with the lipophilization of anthocyanins, which consists of adding an aliphatic chain to a hydrophilic compound, in order to increase its solubility in lipids. Still, the unspecific chemical lipophilization of anthocyanin-esters produces molecules with different properties from their precursors. In this work, experimental changes of anthocyanin-esters obtained by chemical lipophilization are investigated in silico aiming specifically at observing their molecular behavior and comparing it with their anthocyanin precursor. Thus, the analysis of delphinidin 3-O-sambubioside and its esters employing Density Functional Theory (DFT) methods, such as the hybrid functional B3LYP in combination with the 6-31++G(d,p) Pople basis set, provides the ground state properties, the local reactivity and the molecular orbitals (MOs) of these compounds. Excited states properties were analyzed by TD-DFT with the B3LYP functional, and the M06 and M06-2X meta-GGA functionals. Local reactivity calculations showed that the electrophilic site for all the anthocyanin-esters was the same as the one for the anthocyanin precursor, however the nucleophilic site changed depending localization of the esterification. TD-DFT results indicate that the place of esterification could change the electronic transitions and the MOs spatial distribution.


Assuntos
Antocianinas/química , Ésteres/química , Modelos Teóricos , Estrutura Molecular , Difração de Raios X
7.
BMC Complement Altern Med ; 15: 332, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400221

RESUMO

BACKGROUND: Essential oils and their constituents are commonly known for their antibacterial, antifungal and antiparasitic activity, and there are also reports on the antimycobacterial properties, but more experimental data are needed for the description of the mechanism of action or structural (and molecular) properties related to the antimicrobial activity. METHODS: Twenty-five constituents of essential oils were evaluated against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis AN5 by the Alamar Blue technique. Twenty compounds were modeled using in silico techniques descriptor generation and subsequent QSAR model building using genetic algorithms. The p-cymene, menthol, carvacrol and thymol were studied at the quantum mechanical level through the mapping of HOMO and LUMO orbitals. The cytotoxic activity against macrophages (J774A) was also evaluated for these four compounds using the Alamar Blue technique. RESULTS: All compounds tested showed to be active antimicrobials against M. tuberculosis. Carvacrol and thymol were the most active terpenes, with MIC values of 2.02 and 0.78 µg/mL respectively. Cinnamaldehyde and cinnamic acid were the most active phenylpropanes with MIC values of 3.12 and 8.16 µg/mL respectively. The QSAR models included the octanol-water partition (LogP) ratio as the molecular property that contributes the most to the antimycobacterial activity and the phenolic group (nArOH) as the major structural element. CONCLUSIONS: The description of the molecular properties and the structural characteristics responsible for antimycobacterial activity of the compounds tested, were used for the development of mathematical models that describe structure-activity relationship. The identification of molecular and structural descriptors provide insight into the mechanisms of action of the active molecules, and all this information can be used for the design of new structures that could be synthetized as potential new antimycobacterial agents.


Assuntos
Antibacterianos/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Óleos Voláteis/farmacologia , Anti-Infecciosos , Antifúngicos , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Relação Quantitativa Estrutura-Atividade , Terpenos/farmacologia
8.
J Mol Model ; 19(9): 3537-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722558

RESUMO

Thiadiazole derivatives have been widely employed in the areas of pharmaceutical, agricultural, industrial, and polymer chemistry. The electronic and molecular structures of thiadiazoles are of interest because they have an equal number of valence electrons and similar molecular structures to thiophenes, which are currently used in the construction of organic solar cells due to their relatively high hole mobilities and good light-harvesting properties. For this reason, the electronic properties of fluorene-1,3,4-thiadiazole oligomers warrant investigation. In the present work, the structure of fluorene-1,3,4-thiadiazole with one thiadiazole unit in the structure was analyzed. This molecule was then expanded until there were 10 thiadiazole units in the structure. The band gap, HOMO and LUMO distributions, and absorption spectrum were analyzed for each molecule. All calculations were performed by applying the B3LYP/6-31G(d) chemical model in the Gaussian 03W and GaussView software packages. The electronic properties were observed to significantly enhance as the number of monomeric units increased, which also caused the gap energy to decrease from 3.51 eV in the oligomer with just one thiadiazole ring to 2.33 eV in the oligomer with 10 units. The HOMO and LUMO regions were well defined and separated for oligomers with at least 5 monomer units of thiadiazole.

9.
J Mol Model ; 17(8): 1963-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21120557

RESUMO

The electronic and structural properties of pyrrolic ring derivatives were studied using density functional theory (DFT) in terms of their application as organic semiconductor materials in photovoltaic devices. The B3LYP hybrid functional in combination with Pople type 6-31G(d) basis set with a polarization function was used in order to determine the optimized geometries and the electronic properties of the ground state, while transition energies and excited state properties were obtained from time-dependent (TD)-DFT with B3LYP/6-31G(d) calculation. The investigation of pyrrolic derivatives formed by the arrangement of several monomeric units revealed that three-dimensional (3D) conjugated architectures in which the combination of a triphenylamine (TPA) core with π-conjugated rings attached to the core, present the best geometric and electronic characteristics for use as an organic semiconductor material. The highest occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital (LUMO) energy gap was decreased in 3D-structures that extend the absorption spectrum toward longer wavelengths, revealing a feasible intramolecular charge transfer process in these systems. All calculations in this work were performed using the Gaussian 03 W software package.


Assuntos
Dendrímeros/química , Simulação por Computador , Eletrônica , Modelos Químicos , Estrutura Molecular , Compostos Orgânicos/química , Análise Espectral
10.
J Comput Chem ; 30(7): 1027-37, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18942732

RESUMO

It has been proved that fullerene derivatives, in which an oligophenylenevinylene (OPV) group is attached to C(60), present an interesting photophysical phenomenon and can be incorporated into photovoltaic cells. In these systems, the OPV acts as electron donor upon excitation, and then fullerene absorbs photoexcited electrons. These new organic semiconductor materials offer the prospect of lower manufacturing costs and they present several advantages: easy fabrication, large area, flexible and light weight devices when compared with inorganic counter parts. In the present theoretical study, oligomeric chains of p-phenylenevinylene (n-PPV, n = 3-8 units) and C(60)-OPV hybrids have been studied by density functional theory (DFT). Electronic properties such as electronic absorption and emission spectra were calculated in order to determinate how the increment of spectroscopic units affects their electronic behavior. These properties were carried out with time dependent-density functional theory (TD-DFT) and ZINDO semiempirical method. The theoretical calculations of the structural properties of n-PPV and fullerene-OPV hybrids were obtained using PBE1PBE/6-31G and ONIOM two-layered version, respectively. All calculations were done with Gaussian 03W program package.


Assuntos
Alcinos/química , Corantes/química , Simulação por Computador , Elétrons , Éteres/química , Fulerenos/química , Modelos Químicos , Modelos Moleculares , Fotoquímica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...