RESUMO
BACKGROUND: Liver fibrosis is a global health problem, and studying its development provides important information to address its treatment. Here, we characterized the effects of an adenosine compound (IFC-305) on preventing fibrosis and liver inflammation. METHODS: We studied the impact of IFC-305 on a carbon tetrachloride-induced liver fibrosis model in Wistar male rats at 4, 6, and 8 weeks. The effects were characterized by liver tissue histology, macrophages identification by flow cytometry with CD163+/CD11b/c+ antibodies, hepatic and plasmatic cytokine levels employing MILLIPLEX MAP and ELISA, Col1a1 and Il6 gene expression by RTqPCR, lipoperoxidation by TBARS reaction, and reactive oxygen species using 2'-7'dichlorofluorescin diacetate. RESULTS: CCl4-induced liver fibrosis and inflammation were significantly reduced in rats treated with IFC-305 at 6 and 8 weeks. In addition, we observed diminished expression of Col1a1; a decrease in the inflammatory cytokines IL-1ß, IL-6, MCP-1, TNF-α, and IL-4 a; reduction in inflammatory macrophages; inhibition of lipoperoxidation; and ROS production in Kupffer cells. CONCLUSION: This study showed that IFC-305 can inhibit liver fibrosis establishment by regulating the immune response during CCl4-induced damage. The immunomodulatory action of IFC-305 supports its use as a potential therapeutic strategy for preventing liver fibrosis.
Assuntos
Inflamação , Fígado , Ratos , Masculino , Animais , Ratos Wistar , Fibrose , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Citocinas/metabolismo , Tetracloreto de Carbono/toxicidade , AdenosinaRESUMO
Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.
Assuntos
Metilação de DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/irrigação sanguínea , Regiões Promotoras Genéticas , Insuficiência Renal Crônica/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Injúria Renal Aguda/patologia , Animais , Progressão da Doença , Isquemia/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismoRESUMO
A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.