Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(10): 6998-7005, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414989

RESUMO

Prolactin is a polypeptide hormone made of 199 amino acids; 50% of the amino acid chain forms helices, and the rest forms loops. This hormone is typically related to initiating and maintaining lactation, although it is also elevated in various pathological conditions. Serum prolactin levels of 2 to 18 ng ml-1 in men, up to 30 ng ml-1 in women, and 10 to 210 ng ml-1 in pregnant women are considered normal. Immunoassay techniques used for detection are susceptible to error in different clinical conditions. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows for obtaining the protein spectrum in a simple, fast, and reproducible manner. Nonetheless, proper characterization of human prolactin's Raman/SERS spectrum at different concentrations has so far not been deeply discussed. This study aims to characterize the Raman spectrum of human prolactin at physiological concentrations using silver nanoparticles (AgNPs) as the SERS substrate. The Raman spectrum of prolactin at 20 ng ul-1 was acquired. Quasi-spherical AgNPs were obtained using chemical synthesis. For SERS characterization, decreasing dilutions of the protein were made by adding deionized water and then a 1 : 1 volume of the AgNPs colloid. For each mixture, the Raman spectrum was determined. The spectrum of prolactin by SERS was obtained with a concentration of up to 0.1 ng ml-1. It showed characteristic bands corresponding to the side chains of aromatic amino acids in the protein's primary structure and the alpha helices of the secondary structure of prolactin. In conclusion, using quasi-spherical silver nanoparticles as the SERS substrate, the Raman spectrum of human prolactin at physiological concentration was determined.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121941, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208579

RESUMO

Raman spectroscopy was employed to study the thermal denaturation of three different proteins, bovine serum albumin (BSA), lysozyme, ovalbumin; and the decomposition temperature of three amino acids, l-glutamine, l-cysteine, and l-alanine, all of them as lyophilized powders. All the Raman bands observed in the spectra obtained were recorded and analyzed at preset heating temperatures. The results obtained for either protein denaturation temperature TD and amino acid decomposition temperatures TM-dc, were compared with those measured by differential scanning calorimetry (DSC). The DSC and Raman results were additionally corroborated with a thermogravimetric analysis (TGA) for the case of proteins. This exercise indicated almost complete coincidence in the determination of these transition temperatures between the three techniques, evidencing the applicability of Raman spectroscopy in the study of denaturation and decomposition temperatures of proteins and amino acids.


Assuntos
Aminoácidos , Análise Espectral Raman , Desnaturação Proteica , Temperatura , Análise Espectral Raman/métodos , Varredura Diferencial de Calorimetria
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120269, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34418811

RESUMO

In the present work the temperature response of the constitutive S1 segment of the SARS-CoV-2 Spike Glycoprotein (GPS) has been studied. The intensity of the Raman bands remained almost constant before reaching a temperature of 133 °C. At this temperature a significant reduction of peak intensities was observed. Above 144 °C the spectra ceased to show any recognizable feature as that of the GPS S1, indicating that it had transformed after the denaturation process that it was subjected. The GPS S1 change is irreversible. Hence, Raman Spectroscopy (RS) provides a precision method to determine the denaturation temperature (TD) of dry powder GPS S1. The ability of RS was calibrated through the reproduction of TD of other well studied proteins as well as those of the decomposition temperature of some amino acids (AA). Through this study we established a TD of 139 ± 3 °C for powder GPS S1 of SARS-CoV-2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2 , Análise Espectral Raman , Temperatura
4.
J Immunoassay Immunochem ; 36(2): 142-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24689811

RESUMO

Multi-Walled Carbon Nanotubes (MWNTs) are a good choice for resistive biosensors due to their great resistance changes when immunoreactions take place, they are also low-cost, more biocompatible than single-walled carbon nanotubes, and resistive measurement equipment is usually not expensive and readily available. In this work a novel resistive biosensor based on the immobilization of an antigen through a silanization process over the surface of Multi-Walled Carbon Nanotubes (MWNTs) is reported. Results show that the biosensor increases its conductivity when adding the antigen and decreases when adding the antibody making them good candidates for disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Anticorpos/química , Impedância Elétrica , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Propilaminas , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...