Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670972

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Sistemas CRISPR-Cas , Camundongos Endogâmicos NOD
2.
Microsc Microanal ; 30(1): 151-159, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38302194

RESUMO

Analysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and simple method to digitize, store, and analyze BMA samples remotely but is also supported by an Artificial Intelligence (AI) pipeline that accelerates the differential cell counting process and reduces interobserver variability. It has been designed to integrate AI algorithms with the daily clinical routine and can be used in any regular hospital workflow.


Assuntos
Inteligência Artificial , Doenças Hematológicas , Humanos , Medula Óssea , Microscopia , Doenças Hematológicas/diagnóstico , Algoritmos
3.
Haematologica ; 109(1): 272-282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199121

RESUMO

Subsets of multiple myeloma (MM) and monoclonal gammopathies of undetermined significance (MGUS) present with a monoclonal immunoglobulin specific for hepatitis C virus (HCV), thus are presumably HCV-driven, and antiviral treatment can lead to the disappearance of antigen stimulation and improved control of clonal plasma cells. Here we studied the role of hepatitis B virus (HBV) in the pathogenesis of MGUS and MM in 45 HBV-infected patients with monoclonal gammopathy. We analyzed the specificity of recognition of the monoclonal immunoglobulin of these patients and validated the efficacy of antiviral treatment (AVT). For 18 of 45 (40%) HBV-infected patients, the target of the monoclonal immunoglobulin was identified: the most frequent target was HBV (n=11), followed by other infectious pathogens (n=6) and glucosylsphingosine (n=1). Two patients whose monoclonal immunoglobulin targeted HBV (HBx and HBcAg), implying that their gammopathy was HBV-driven, received AVT and the gammopathy did not progress. AVT efficacy was then investigated in a large cohort of HBV-infected MM patients (n=1367) who received or did not receive anti-HBV treatments and compared to a cohort of HCV-infected MM patients (n=1220). AVT significantly improved patient probability of overall survival (P=0.016 for the HBV-positive cohort, P=0.005 for the HCV-positive cohort). Altogether, MGUS and MM disease can be HBV- or HCV-driven in infected patients, and the study demonstrates the importance of AVT in such patients.


Assuntos
Hepatite B , Hepatite C , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/etiologia , Antivirais/uso terapêutico
4.
Methods Mol Biol ; 2748: 151-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070114

RESUMO

CAR-T cell therapy is revolutionizing the treatment of hematologic malignancies. However, there are still many challenges ahead before CAR-T cells can be used effectively to treat solid tumors and certain hematologic cancers, such as T-cell malignancies. Next-generation CAR-T cells containing further genetic modifications are being developed to overcome some of the current limitations of this therapy. In this regard, genome editing is being explored to knock out or knock in genes with the goal of enhancing CAR-T cell efficacy or increasing access. In this chapter, we describe in detail a protocol to knock out genes on CAR-T cells using CRISPR-Cas9 technology. Among various gene editing protocols, due to its simplicity, versatility, and reduced toxicity, we focused on the electroporation of ribonucleoprotein complexes containing the Cas9 protein together with sgRNA. All together, these protocols allow for the design of the knockout strategy, CAR-T cell expansion and genome editing, and analysis of knockout efficiency.


Assuntos
Edição de Genes , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Linfócitos T , Neoplasias/genética
5.
Clin Cancer Res ; 30(4): 904-917, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38109212

RESUMO

PURPOSE: The gut microbiota plays important roles in health and disease. We questioned whether the gut microbiota and related metabolites are altered in monoclonal gammopathies and evaluated their potential role in multiple myeloma and its response to treatment. EXPERIMENTAL DESIGN: We used 16S rRNA sequencing to characterize and compare the gut microbiota of patients with monoclonal gammopathy of undetermined significance (n = 11), smoldering multiple myeloma (n = 9), newly diagnosed multiple myeloma (n = 11), relapsed/refractory multiple myeloma (n = 6), or with complete remission (n = 9). Short-chain fatty acids (SCFA) were quantified in serum and tested in cell lines. Relevant metabolites were validated in a second cohort of 62 patients. RESULTS: Significant differences in alpha- and beta diversity were present across the groups and both were lower in patients with relapse/refractory disease and higher in patients with complete remission after treatment. Differences were found in the abundance of several microbiota taxa across disease progression and in response to treatment. Bacteria involved in SCFA production, including Prevotella, Blautia, Weissella, and Agathobacter, were more represented in the premalignant or complete remission samples, and patients with higher levels of Agathobacter showed better overall survival. Serum levels of butyrate and propionate decreased across disease progression and butyrate was positively associated with a better response. Both metabolites had antiproliferative effects in multiple myeloma cell lines. CONCLUSIONS: We demonstrate that SCFAs metabolites and the gut microbiota associated with their production might have beneficial effects in disease evolution and response to treatment, underscoring its therapeutic potential and value as a predictor.


Assuntos
Microbioma Gastrointestinal , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , RNA Ribossômico 16S/genética , Recidiva Local de Neoplasia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Progressão da Doença , Resposta Patológica Completa
6.
Immun Ageing ; 20(1): 55, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853468

RESUMO

Osteoporosis is a skeletal disease that can increase the risk of fractures, leading to adverse health and socioeconomic consequences. However, current clinical methods have limitations in accurately estimating fracture risk, particularly in older adults. Thus, new technologies are necessary to improve the accuracy of fracture risk estimation. In this observational study, we aimed to explore the association between serum cytokines and hip fracture status in older adults, and their associations with fracture risk using the FRAX reference tool. We investigated the use of a proximity extension assay (PEA) with Olink. We compared the characteristics of the population, functional status and detailed body composition (determined using densitometry) between groups. We enrolled 40 participants, including 20 with hip fracture and 20 without fracture, and studied 46 cytokines in their serum. After conducting a score plot and two unpaired t-tests using the Benjamini-Hochberg method, we found that Interleukin 6 (IL-6), Lymphotoxin-alpha (LT-α), Fms-related tyrosine kinase 3 ligand (FLT3LG), Colony stimulating factor 1 (CSF1), and Chemokine (C-C motif) ligand 7 (CCL7) were significantly different between fracture and non-fracture patients (p < 0.05). IL-6 had a moderate correlation with FRAX (R2 = 0.409, p < 0.001), while CSF1 and CCL7 had weak correlations with FRAX. LT-α and FLT3LG exhibited a negative correlation with the risk of fracture. Our results suggest that targeted proteomic tools have the capability to identify differentially regulated proteins and may serve as potential markers for estimating fracture risk. However, longitudinal studies will be necessary to validate these results and determine the temporal patterns of changes in cytokine profiles.

7.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432926

RESUMO

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão , Camundongos , Animais , Pulmão/metabolismo , Encéfalo/metabolismo , Lipossomos/metabolismo , Leucócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
8.
Leukemia ; 37(8): 1649-1659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422594

RESUMO

Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Splicing de RNA , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
9.
Blood Adv ; 7(9): 1885-1898, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053778

RESUMO

Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of lymphoid malignancies associated with poor prognosis due to ineffective treatment options and high rates of relapse. The success of chimeric antigen receptor T-cell (CART) therapy for certain hematologic malignancies makes it an attractive treatment option for PTCLs. However, shared expression of potential target antigens by both malignant and healthy T cells poses a challenge. Current prospective CART approaches cause a high degree of on-target, off-tumor activity, resulting in fratricide during CART expansion, depletion of healthy T cells in vivo, and immune compromise in the patient. To limit off-tumor targeting, we sought to develop a CART platform specific for a given T-cell receptor vß (TCRvß) family that would endow CAR-modified T cells with the ability to mediate lysis of the clonal malignant population while preserving the majority of healthy T cells. Here, CAR constructs specific for multiple TCRvß family members were designed and validated. Our results demonstrate that TCRvß-family-specific CARTs (TCRvß-CARTs) recognize and kill TCRvß-expressing target cells. This includes specific self-depletion of the targeted cell subpopulation in the CART product and lysis of cell lines engineered to express a target TCRvß family. Furthermore, TCRvß-CARTs eliminated the dominant malignant TCRvß clone in 2 patient samples. Finally, in immunodeficient mice, TCRvß-CARTs eradicated malignant cells in a TCRvß-dependent manner. Importantly, the nontargeted TCRvß families were spared in all cases. Thus, TCRvß-CART therapy provides a potential option for high-precision treatment of PTCL with limited healthy T-cell depletion.


Assuntos
Linfoma de Células T Periférico , Receptores de Antígenos Quiméricos , Camundongos , Animais , Linfócitos T , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Linfoma de Células T Periférico/terapia , Células Clonais
10.
J Clin Med ; 13(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202104

RESUMO

INTRODUCTION: Hip fractures are the most common fracture leading to hospitalization and are associated with high costs, mortality rates and functional decline. Although several guidelines exist for preventing new fractures and promoting functional recovery, they tend to focus on osteoporosis treatment and do not take into account the complexity of frailty in older adults and geriatric syndromes, which are important factors in individuals at risk of suffering from frailty fractures. Moreover, most health systems are fragmented and are incapable of providing appropriate management for frail and vulnerable individuals who are at risk of experiencing fragility fractures. Multicomponent interventions and physical exercise using tele-rehabilitation could play a role in the management of hip fracture recovery. However, the effectiveness of exercise prescription and its combination with a comprehensive geriatric assessment (CGA) is still unclear. METHODS: This randomized clinical trial will be conducted at the Hospital Universitario de Navarra (Pamplona, Spain). A total of 174 older adults who have suffered a hip fracture and fulfil the criteria for inclusion will be randomly allocated to either the intervention group or the control group. The intervention group will receive a multicomponent intervention consisting of individualized home-based exercise using the @ctive hip app for three months, followed by nine months of exercise using Vivifrail. Additionally, the intervention group will receive nutrition intervention, osteoporosis treatment, polypharmacy adjustment and evaluation of patient mood, cognitive impairment and fear of falling. The control group will receive standard outpatient care according to local guidelines. This research aims to evaluate the impact of the intervention on primary outcome measures, which include changes in functional status during the study period based on the Short Physical Performance Battery. DISCUSSION: The findings of this study will offer valuable insights into the efficacy of a comprehensive approach that considers the complexity of frailty in older adults and geriatric syndromes, which are important factors in individuals at risk of suffering from frailty fractures. This study's findings will contribute to the creation of more effective strategies tailored to the requirements of these at-risk groups.

11.
Cancer Cell ; 40(12): 1470-1487.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513049

RESUMO

Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Vetores Genéticos/genética , Citocinas/metabolismo
12.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892871

RESUMO

CRISPR is becoming an indispensable tool in biological research, revolutionizing diverse fields of medical research and biotechnology. In the last few years, several CRISPR-based genome-targeting tools have been translated for the study of hematological neoplasms. However, there is a lack of reviews focused on the wide uses of this technology in hematology. Therefore, in this review, we summarize the main CRISPR-based approaches of high throughput screenings applied to this field. Here we explain several libraries and algorithms for analysis of CRISPR screens used in hematology, accompanied by the most relevant databases. Moreover, we focus on (1) the identification of novel modulator genes of drug resistance and efficacy, which could anticipate relapses in patients and (2) new therapeutic targets and synthetic lethal interactions. We also discuss the approaches to uncover novel biomarkers of malignant transformations and immune evasion mechanisms. We explain the current literature in the most common lymphoid and myeloid neoplasms using this tool. Then, we conclude with future directions, highlighting the importance of further gene candidate validation and the integration and harmonization of the data from CRISPR screening approaches.

13.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577501

RESUMO

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
15.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070369

RESUMO

Folate receptor beta (FRß) is a folate binding receptor expressed on myeloid lineage hematopoietic cells. FRß is commonly expressed at high levels on malignant blasts in patients with acute myeloid leukemia (AML), as well as on M2 polarized tumor-associated macrophages (TAMs) in the tumor microenvironment of many solid tumors. Therefore, FRß is a potential target for both direct and indirect cancer therapy. We demonstrate that FRß is expressed in both AML cell lines and patient-derived AML samples and that a high-affinity monoclonal antibody against FRß (m909) has the ability to cause dose- and expression-dependent ADCC against these cells in vitro. Importantly, we find that administration of m909 has a significant impact on tumor growth in a humanized mouse model of AML. Surprisingly, m909 functions in vivo with and without the infusion of human NK cells as mediators of ADCC, suggesting potential involvement of mouse macrophages as effector cells. We also found that TAMs from primary ovarian ascites samples expressed appreciable levels of FRß and that m909 has the ability to cause ADCC in these samples. These results indicate that the targeting of FRß using m909 has the potential to limit the outgrowth of AML in vitro and in vivo. Additionally, m909 causes cytotoxicity to TAMs in the tumor microenvironment of ovarian cancer warranting further investigation of m909 and its derivatives as therapeutic agents in patients with FRß-expressing cancers.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor 2 de Folato , Imunoterapia , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Neoplasias Ovarianas , Animais , Células CHO , Cricetulus , Feminino , Receptor 2 de Folato/antagonistas & inibidores , Receptor 2 de Folato/imunologia , Células HL-60 , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Células THP-1 , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Commun ; 12(1): 877, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563975

RESUMO

The immunosuppressive tumor microenvironment (TME) represents a major barrier for effective immunotherapy. Tumor-associated macrophages (TAMs) are highly heterogeneous and plastic cell components of the TME which can either promote tumor progression (M2-like) or boost antitumor immunity (M1-like). Here, we demonstrate that a subset of TAMs that express folate receptor ß (FRß) possess an immunosuppressive M2-like profile. In syngeneic tumor mouse models, chimeric antigen receptor (CAR)-T cell-mediated selective elimination of FRß+ TAMs in the TME results in an enrichment of pro-inflammatory monocytes, an influx of endogenous tumor-specific CD8+ T cells, delayed tumor progression, and prolonged survival. Preconditioning of the TME with FRß-specific CAR-T cells also improves the effectiveness of tumor-directed anti-mesothelin CAR-T cells, while simultaneous co-administration of both CAR products does not. These results highlight the pro-tumor role of FRß+ TAMs in the TME and the therapeutic implications of TAM-depleting agents as preparative adjuncts to conventional immunotherapies that directly target tumor antigens.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Receptor 2 de Folato/imunologia , Receptor 2 de Folato/metabolismo , Humanos , Terapia de Imunossupressão , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Neoplasias/imunologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo
18.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149591

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense desmoplastic stroma that limits the delivery of anticancer agents. VCN-01 is an oncolytic adenovirus designed to replicate in cancer cells with a dysfunctional RB1 pathway and express hyaluronidase. Here, we evaluated the mechanism of action of VCN-01 in preclinical models and in patients with pancreatic cancer. METHODS: VCN-01 replication and antitumor efficacy were evaluated alone and in combination with standard chemotherapy in immunodeficient and immunocompetent preclinical models using intravenous or intratumoral administration. Hyaluronidase activity was evaluated by histochemical staining and by measuring drug delivery into tumors. In a proof-of-concept clinical trial, VCN-01 was administered intratumorally to patients with PDAC at doses up to 1×1011 viral particles in combination with chemotherapy. Hyaluronidase expression was measured in serum by an ELISA and its activity within tumors by endoscopic ultrasound elastography. RESULTS: VCN-01 replicated in PDAC models and exerted antitumor effects which were improved when combined with chemotherapy. Hyaluronidase expression by VCN-01 degraded tumor stroma and facilitated delivery of a variety of therapeutic agents such as chemotherapy and therapeutic antibodies. Clinically, treatment was generally well-tolerated and resulted in disease stabilization of injected lesions. VCN-01 was detected in blood as secondary peaks and in post-treatment tumor biopsies, indicating virus replication. Patients had increasing levels of hyaluronidase in sera over time and decreased tumor stiffness, suggesting stromal disruption. CONCLUSIONS: VCN-01 is an oncolytic adenovirus with direct antitumor effects and stromal disruption capabilities, representing a new therapeutic agent for cancers with dense stroma. TRIAL REGISTRATION NUMBER: EudraCT number: 2012-005556-42 and NCT02045589.


Assuntos
Adenoviridae/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Células Estromais/efeitos dos fármacos , Albuminas/administração & dosagem , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Terapia Combinada , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Gencitabina
19.
Front Immunol ; 12: 797209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087522

RESUMO

Multiple myeloma (MM) remains an incurable plasma cell malignancy. While its origin is enigmatic, an association with infectious pathogens including hepatitis C virus (HCV) has been suggested. Here we report nine patients with monoclonal gammopathy of undetermined significance (MGUS) or MM with previous HCV infection, six of whom received antiviral treatment. We studied the evolution of the gammopathy disease, according to anti-HCV treatment and antigen specificity of purified monoclonal immunoglobulin, determined using the INNO-LIA™ HCV Score assay, dot-blot assays, and a multiplex infectious antigen microarray. The monoclonal immunoglobulin from 6/9 patients reacted against HCV. Four of these patients received antiviral treatment and had a better evolution than untreated patients. Following antiviral treatment, one patient with MM in third relapse achieved complete remission with minimal residual disease negativity. For two patients who did not receive antiviral treatment, disease progressed. For the two patients whose monoclonal immunoglobulin did not react against HCV, antiviral treatment was not effective for MGUS or MM disease. Our results suggest a causal relationship between HCV infection and MGUS and MM progression. When HCV was eliminated, chronic antigen-stimulation disappeared, allowing control of clonal plasma cells. This opens new possibilities of treatment for MGUS and myeloma.


Assuntos
Antivirais/uso terapêutico , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/etiologia , Paraproteinemias/diagnóstico , Paraproteinemias/etiologia , Idoso , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Biomarcadores , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Hepacivirus/imunologia , Hepatite C/diagnóstico , Hepatite C/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/etiologia , Mieloma Múltiplo/sangue , Paraproteinemias/sangue , Resultado do Tratamento , Carga Viral
20.
Antioxidants (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271863

RESUMO

Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...