Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446312

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Camundongos , Animais , Doença de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Células Endoteliais/metabolismo , Camundongos Transgênicos , Angiopatia Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834679

RESUMO

Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Sinucleinopatias , Animais , Doença de Parkinson/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...