Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Analyst ; 149(10): 2842-2854, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38600773

RESUMO

Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.

2.
Nat Commun ; 15(1): 2781, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555303

RESUMO

Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates an EC mechanism, an interfacial electron transfer (E step) followed by a solution reaction (C step), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns the EC mechanism's presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of the C step spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.

3.
J Am Chem Soc ; 146(13): 8847-8851, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511940

RESUMO

Despite the significance of singlet oxygen (1O2) in several biological, chemical, and energy storage systems, its voltammetric reduction at an electrode remains unreported. We address this issue using nanogap scanning electrochemical microscopy (SECM) in substrate-generation/tip-collection mode. Our investigation reveals a reductive process on the SECM tip at -1.0 V (vs Fc+/Fc) during the breakdown of the Li2CO3 substrate in deuterated acetonitrile. Notably, this value is approximately 0.9 V more positive than the reduction potential of triplet oxygen (3O2), consistent with thermodynamic estimates for the energy of the formation of 1O2. This finding holds significant implications for understanding the reaction mechanisms involving 1O2 in nonaqueous media.

4.
Inorg Chem ; 63(11): 4925-4938, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442008

RESUMO

Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.


Assuntos
Nativos do Alasca , Neoplasias Ósseas , Osteossarcoma , Criança , Adulto Jovem , Humanos , Cobre/farmacologia , Ligantes , Osteossarcoma/tratamento farmacológico , Cisplatino
5.
Anal Chem ; 96(6): 2435-2444, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294875

RESUMO

The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-È® stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.

6.
ACS Appl Mater Interfaces ; 16(3): 3311-3324, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38212130

RESUMO

Species transport in thin-film Nafion heavily influences proton-exchange membrane (PEMFC) performance, particularly in low-platinum-loaded cells. Literature suggests that phase-segregated nanostructures in hydrated Nafion thin films can reduce species mobility and increase transport losses in cathode catalyst layers. However, these structures have primarily been observed at silicon-Nafion interfaces rather than at more relevant material (e.g., Pt and carbon black) interfaces. In this work, we use neutron reflectometry and X-ray photoelectron spectroscopy to investigate carbon-supported Nafion thin films. Measurements were taken in humidified environments for Nafion thin films (≈30-80 nm) on four different carbon substrates. Results show a variety of interfacial morphologies in carbon-supported Nafion. Differences in carbon samples' roughness, surface chemistry, and hydrophilicity suggest that thin-film Nafion phase segregation is impacted by multiple substrate characteristics. For instance, hydrophilic substrates with smooth surfaces correlate with a high likelihood of lamellar phase segregation parallel to the substrate. When present, the lamellar structures are less pronounced than those observed at silicon oxide interfaces. Local oscillations in water volume fraction for the lamellae were less severe, and the lamellae were thinner and were not observed when the water was removed, all in contrast to Nafion-silicon interfaces. For hydrophobic and rough samples, phase segregation was more isotropic rather than lamellar. Results suggest that Nafion in PEMFC catalyst layers is less influenced by the interface compared with thin films on silicon. Despite this, our results demonstrate that neutron reflectometry measurements of silicon-Nafion interfaces are valuable for PEMFC performance predictions, as water uptake in the majority Nafion layers (i.e., the uniformly hydrated region beyond the lamellar region) trends similarly with thickness, regardless of support material.

7.
Nano Lett ; 23(24): 11493-11500, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38061056

RESUMO

Photoelectrochemical (PEC) conversion is a promising way to use methane (CH4) as a chemical building block without harsh conditions. However, the PEC conversion of CH4 to value-added chemicals remains challenging due to the thermodynamically favorable overoxidation of CH4. Here, we report WO3 nanotube (NT) photoelectrocatalysts for PEC CH4 conversion with high liquid product selectivity through defect engineering. By tuning the flame reduction treatment, we carefully controlled the oxygen vacancies of WO3 NTs. The optimally reduced WO3 NTs suppressed overoxidation of CH4 showing a high total C1 liquid selectivity of 69.4% and a production rate of 0.174 µmol cm-2 h-1. Scanning electrochemical microscopy revealed that oxygen vacancies can restrain the production of hydroxyl radicals, which, in excess, could further oxidize C1 intermediates to CO2. Additionally, band diagram analysis and computational studies elucidated that oxygen vacancies thermodynamically suppress overoxidation. This work introduces a strategy for understanding and controlling the selectivity of photoelectrocatalysts for direct conversion of CH4 to liquids.

8.
Chem Sci ; 14(43): 12292-12298, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969580

RESUMO

Prospects for refurbishing and recycling energy storage technologies such as lead acid batteries (LABs) prompt a better understanding of their failure mechanisms. LABs suffer from a high self-discharge rate accompanied by deleterious hard sulfation processes which dramatically decrease cyclability. Furthermore, the evolution of H2, CO, and CO2 also poses safety risks. Despite the maturity of LAB technologies, the mechanisms behind these degradation phenomena have not been well established, thus hindering attempts to extend the cycle life of LABs in a sustainable manner. Here, we investigate the effect of the oxygen reduction reaction (ORR) on the sulfation of LAB anodes under open circuit (OC). For the first time, we found that the sulfation reaction is significantly enhanced in the presence of oxygen. Interestingly, we also report the formation of reactive oxygen species (ROS) during this process, known to hamper cycle life of batteries via corrosion. Electron spin resonance (ESR) and in situ scanning electrochemical microscopy (SECM) unambiguously demonstrated the presence of OH˙ and of H2O2 as the products of spontaneous ORR on LAB anodes. High temporal resolution SECM measurements of the hydrogen evolution reaction (HER) during LAB anode corrosion displayed a stochastic nature, highlighting the value of the in situ experiment. Balancing the ORR and HER prompts self-discharge while reaction of the carbon additives with highly oxidizing ROS may explain previously reported parasitic reactions generating CO and CO2. This degradation mode implicating ROS and battery corrosion impacts the design, operation, and recycling of LABs as well as upcoming chemistries involving the ORR.

9.
Nat Commun ; 14(1): 4847, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563151

RESUMO

Post-consumer plastic waste in the environment has driven the scientific community to develop deconstruction methods that yield valued substances from these synthetic macromolecules. Electrocatalysis is a well-established method for achieving challenging transformations in small molecule synthesis. Here we present the first electro-chemical depolymerization of polyoxymethylene-a highly crystalline engineering thermoplastic (Delrin®)-into its repolymerizable monomer, formaldehyde/1,3,5-trioxane, under ambient conditions. We investigate this electrochemical deconstruction by employing solvent screening, cyclic voltammetry, divided cell studies, electrolysis with redox mediators, small molecule model studies, and control experiments. Our findings determine that the reaction proceeds via a heterogeneous electro-mediated acid depolymerization mechanism. The bifunctional role of the co-solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also revealed. This study demonstrates the potential of electromediated depolymerization serving as an important role in sustainable chemistry by merging the concepts of renewable energy and circular plastic economy.

10.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 93-115, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37068746

RESUMO

Developing a deeper understanding of dynamic chemical, electronic, and morphological changes at interfaces is key to solving practical issues in electrochemical energy storage systems (EESSs). To unravel this complexity, an assortment of tools with distinct capabilities and spatiotemporal resolutions have been used to creatively visualize interfacial processes as they occur. This review highlights how electrochemical scanning probe techniques (ESPTs) such as electrochemical atomic force microscopy, scanning electrochemical microscopy, scanning ion conductance microscopy, and scanning electrochemical cell microscopy are uniquely positioned to address these challenges in EESSs. We describe the operating principles of ESPTs, focusing on the inspection of interfacial structure and chemical processes involved in Li-ion batteries and beyond. We discuss current examples, performance limitations, and complementary ESPTs. Finally, we discuss prospects for imaging improvements and deep learning for automation. We foresee that ESPTs will play an enabling role in advancing EESSs as we transition to renewable energies.

11.
Angew Chem Int Ed Engl ; 62(24): e202304218, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37053046

RESUMO

Recently, non-Faradaic effects were used to modify the electronic structure and reactivity of electrode-bound species. We hypothesize that these electrostatic perturbations could influence the chemical reactivity of electrolyte species near an electrode in the absence of Faradaic electron transfer. A prime example of non-Faradaic effects is acid-base dissociation near an interface. Here, we probed the near-electrode dissociation of N-heterocycle-BF3 Lewis adducts upon electrode polarization, well outside of the redox potential window of the adducts. Using scanning electrochemical microscopy and confocal fluorescence spectroscopy, we detected a potential-dependent depletion of the adduct near the electrode. We propose an electro-inductive effect where a more positive potential leads to electron withdrawal on the N-heterocycle. This study takes a step forward in the use of electrostatics at electrochemical interfaces for field-driven electrocatalytic and electro-synthetic processes.

12.
Anal Chem ; 95(11): 4840-4845, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36888926

RESUMO

Here, we develop and show the use of an open-source Python library to control commercial potentiostats. It standardizes the commands for different potentiostat models, opening the possibility to perform automated experiments independently of the instrument used. At the time of this writing, we have included potentiostats from CH Instruments (models 1205B, 1242B, 601E, and 760E) and PalmSens (model Emstat Pico), although the open-source nature of the library allows for more to be included in the future. To showcase the general workflow and implementation of a real experiment, we have automated the Randles-Sevcík methodology to determine the diffusion coefficient of a redox-active species in solution using cyclic voltammetry. This was accomplished by writing a Python script that includes data acquisition, data analysis, and simulation. The total run time was 1 min and 40 s, well below the time it would take even an experienced electrochemist to apply the methodology in a traditional manner. Our library has potential applications that expand beyond the automation of simple repetitive tasks; for example, it can interface with peripheral hardware and well-established third-party Python libraries as part of a more complex and intelligent setup that relies on laboratory automation, advanced optimization, and machine learning.

13.
ACS Meas Sci Au ; 3(1): 62-72, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36817007

RESUMO

Characterizing the decomposition of electrogenerated species in solution is essential for applications involving electrosynthesis, homogeneous electrocatalysis, and energy storage with redox flow batteries. In this work, we present an automated, multiplexed, and highly robust platform for determining the rate constant of chemical reaction steps following electron transfer, known as the EC mechanism. We developed a generation-collection methodology based on microfabricated interdigitated electrode arrays (IDAs) with variable gap widths on a single device. Using a combination of finite-element simulations and statistical analysis of experimental data, our results show that the natural logarithm of collection efficiency is linear with respect to gap width, and this quantitative analysis is used to determine the decomposition rate constant of the electrogenerated species (k c). The integrated IDA method is used in a series of experiments to measure k c values between ∼0.01 and 100 s-1 in aqueous and nonaqueous solvents and at concentrations as high as 0.5 M of the redox-active species, conditions that are challenging to address using standard methods based on conventional macroelectrodes. The versatility of our approach allows for characterization of a wide range of reactions including intermolecular cyclization, hydrolysis, and the decomposition of candidate molecules for redox flow batteries at variable concentration and water content. Overall, this new experimental platform presents a straightforward automated method to assess the degradation of redox species in solution with sufficient flexibility to enable high-throughput workflows.

14.
J Chem Phys ; 158(1): 014701, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610978

RESUMO

Graphitic carbon electrodes are central to many electrochemical energy storage and conversion technologies. Probing the behavior of molecular species at the electrochemical interfaces they form is paramount to understanding redox reaction mechanisms. Combining surface-enhanced Raman scattering (SERS) with electrochemical methods offers a powerful way to explore such mechanisms, but carbon itself is not a SERS activating substrate. Here, we report on a hybrid substrate consisting of single- or few-layer graphene sheets deposited over immobilized silver nanoparticles, which allows for simultaneous SERS and electrochemical investigation. To demonstrate the viability of our substrate, we adsorbed anthraquinone-2,6-disulfonate to graphene and studied its redox response simultaneously using SERS and cyclic voltammetry in acidic solutions. We identified spectral changes consistent with the reversible redox of the quinone/hydroquinone pair. The SERS intensities on bare silver and hybrid substrates were of the same order of magnitude, while no discernible signals were observed over bare graphene, confirming the SERS effect on adsorbed molecules. This work provides new prospects for exploring and understanding electrochemical processes in situ at graphitic carbon electrodes.

15.
J Inorg Biochem ; 238: 112052, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334365

RESUMO

The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.


Assuntos
Complexos de Coordenação , Rutênio , Rutênio/química , Complexos de Coordenação/química , Peróxido de Hidrogênio , Compostos de Rutênio/química , Óxido Nítrico/química , DNA
16.
Chem Asian J ; 18(2): e202201120, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36482038

RESUMO

The fundamental process in non-aqueous redox flow battery (NRFB) operation revolves around electron transfer (ET) between a current collector electrode and redox-active organic molecules (redoxmers) in solution. Here, we present an approach utilizing scanning electrochemical microscopy (SECM) to evaluate interfacial ET kinetics between redoxmers and various electrode materials of interest at desired locations. This spot-analysis method relies on the measurement of heterogeneous electron transfer rate constants (kf or kb ) as a function of applied potential (E-E0 '). As demonstrated by COMSOL simulations, this method enables the quantification of Butler-Volmer kinetic parameters, the standard heterogeneous rate constant, k0 , and the transfer coefficient, α. Our method enabled the identification of inherent asymmetries in the ET kinetics arising during the reduction of ferrocene-based redoxmers, compared to their oxidation which displayed faster rate constants. Similar behavior was observed on a wide variety of carbon electrodes such as multi-layer graphene, highly ordered pyrolytic graphite, glassy carbon, and chemical vapor deposition-grown graphite films. However, aqueous systems and Pt do not exhibit such kinetic effects. Our analysis suggests that differential adsorption of the redoxmers is insufficient to account for our observations. Displaying a greater versatility than conventional electroanalytical methods, we demonstrate the operation of our spot analysis at concentrations up to 100 mM of redoxmer over graphite films. Looking forward, our method can be used to assess non-idealities in a variety of redoxmer/electrode/solvent systems with quantitative evaluation of kinetics for applications in redox-flow battery research.


Assuntos
Grafite , Grafite/química , Carbono/química , Microscopia Eletroquímica de Varredura , Oxirredução , Eletrodos , Cinética
17.
Macromolecules ; 56(9): 3421-3429, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38510570

RESUMO

Controlling π-conjugated polymer-acceptor complex interaction, including the interaction strength and location along the polymer backbone, is central to organic electronics and energy applications. Straps in the strapped π-conjugated polymers mask the π-face of the polymer backbone and hence are useful to control the interactions of the π-face of the polymer backbone with other polymer chains and small molecules compared to the conventional pendant solubilizing chains. Herein, we have synthesized a series of strapped π-conjugated copolymers containing a mixture of strapped and nonstrapped comonomers to control the polymer-acceptor interactions. Simulations confirmed that the acceptor is directed toward the nonstrapped repeat unit. More importantly, strapped copolymers overcome a major drawback of homopolymers and display higher photoinduced photoluminescence (PL) quenching, which is a measure of electron transfer from the polymer to acceptor, compared to that of both the strapped homopolymer and the conventional polymer with pendant solubilizing chains. We have also shown that this strategy applies not only to strapped polymers, but also to the conventional polymers with pendant solubilizing chains. The increase in PL quenching is attributed to the absence of a steric sheath around the comonomers and their random location along the polymer backbone, which enhances the probability of non-neighbor acceptor binding events along the polymer backbone. Thus, by mixing insulated and noninsulated monomers along the polymer backbone, the location of the acceptor along the polymer backbone, polymer-acceptor interaction strength, and the efficiency of photoinduced charge transfer are controllable compared to the homopolymers.

18.
J Am Chem Soc ; 144(41): 18896-18907, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36215201

RESUMO

The hydroxyl radical (•OH) is one of the most attractive reactive oxygen species due to its high oxidation power and its clean (photo)(electro)generation from water, leaving no residues and creating new prospects for efficient wastewater treatment and electrosynthesis. Unfortunately, in situ detection of •OH is challenging due to its short lifetime (few ns). Using lifetime-extending spin traps, such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to generate the [DMPO-OH]• adduct in combination with electron spin resonance (ESR), allows unambiguous determination of its presence in solution. However, this method is cumbersome and lacks the necessary sensitivity and versatility to explore and quantify •OH generation dynamics at electrode surfaces in real time. Here, we identify that [DMPO-OH]• is redox-active with E0 = 0.85 V vs Ag|AgCl and can be conveniently detected on Au and C ultramicroelectrodes. Using scanning electrochemical microscopy (SECM), a four-electrode technique capable of collecting the freshly generated [DMPO-OH]• from near the electrode surface, we detected its generation in real time from operating electrodes. We also generated images of [DMPO-OH]• production and estimated and compared its generation efficiency at various electrodes (boron-doped diamond, tin oxide, titanium foil, glassy carbon, platinum, and lead oxide). Density functional calculations, ESR measurements, and bulk calibration using the Fenton reaction helped us unambiguously identify [DMPO-OH]• as the source of redox activity. We hope these findings will encourage the rapid, inexpensive, and quantitative detection of •OH for conducting informed explorations of its role in mediated oxidation processes at electrode surfaces for energy, environmental, and synthetic applications.


Assuntos
Radical Hidroxila , Platina , Radical Hidroxila/química , Espécies Reativas de Oxigênio , Microscopia Eletroquímica de Varredura , Titânio , Boro , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Eletrodos , Água , Carbono , Diamante , Radicais Livres , Marcadores de Spin
19.
ACS Appl Mater Interfaces ; 14(2): 2742-2753, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982523

RESUMO

The electrochemical conversion of carbon dioxide (CO2) to useful chemical fuels is a promising route toward the achievement of carbon neutral and carbon negative energy technologies. Copper (Cu)- and Cu oxide-derived surfaces are known to electrochemically convert CO2 to high-value and energy-dense products. However, the nature and stability of oxidized Cu species under reaction conditions are the subject of much debate in the literature. Herein, we present the synthesis and characterization of copper-titanate nanocatalysts, with discrete Cu-O coordination environments, for the electrochemical CO2 reduction reaction (CO2RR). We employ real-time in situ X-ray absorption spectroscopy (XAS) to monitor Cu species under neutral-pH CO2RR conditions. Combination of voltammetry and on-line electrochemical mass spectrometry with XAS results demonstrates that the titanate motif promotes the retention of oxidized Cu species under reducing conditions for extended periods, without itself possessing any CO2RR activity. Additionally, we demonstrate that the specific nature of the Cu-O environment and the size of the catalyst dictate the long-term stability of the oxidized Cu species and, subsequently, the product selectivity.

20.
Anal Chem ; 93(42): 14048-14052, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34644493

RESUMO

Choosing reference electrodes for nonaqueous electrochemical measurements, especially in energy storage research, is challenging due to lengthy experiments (>1 day), the lack of alternatives to the commonly used Ag/Ag+ reference electrode (RE), the introduction of junction potentials, and the possibility of sample contamination. Often, quasi-reference electrodes (QREs) such as Ag wires and Li metal strips are used. However, small changes in electrolyte composition can cause large potential drifts, and their surfaces may be reactive to the solution. Here, we propose an alternative QRE based on polypyrrole electrodeposited on Pt wire (PPyQRE) encased in a glass tube with the open end sealed with commercial frits. While freestanding PPyQRE wires have been reported in the literature, simple encasing of the PPyQRE overcomes the above-mentioned drawbacks of QREs while providing a reliable reference potential that is closer to the performance of an RE. During cyclic voltammetric and bulk electrolysis testing of a redox mediator in solution, the encased PPyQRE exhibited stable reference potentials over multiple charge/discharge cycles with minimal drift (∼5 mV) after ∼2.25 days of operation. We also tested the reliability of our reference during the testing of multilayer graphene Li-ion anodes, which often involve cycling samples at highly reducing potentials (<-3 V vs Fc/Fc+) over long durations (>1 day). In the same testing conditions, the Ag/Ag+ electrode led to observable Ag deposits on the graphene and large potential drifts (∼50 mV), while the PPyQRE exhibited no measurable drift and revealed changes in voltammetric features that were obscured by reference drift when using Ag/Ag+. Minor reference drifts of ∼30 mV over long usage of the PPyQRE (∼2 months) can be addressed by calibration with a ferrocene couple at the end of experiments. These results highlight the advantages of using an encased PPyQRE as a simple and practical reference electrode for electrochemical measurements in the field of nonaqueous energy storage research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...