Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38498564

RESUMO

Florivores consume floral structures with negative effects on plant fitness and pollinator attraction. Several studies have evaluated these consequences in hermaphroditic plants, but little is known about the effects on monoecious and dioecious species. We characterize the florivory and its effects on floral visitors and reproductive success in a monoecious population of Sagittaria lancifolia. Five categories of florivory were established according to the petal area consumed. Visits were recorded in male and female flowers within the different damage categories. Reproductive success was evaluated through fruit number and weight, as well as the number of seeds per fruit. Our results show that the weevil Tanysphyrus lemnae is the main florivore, and it mainly damages the female flowers. Hymenoptera were recorded as the most frequent visitors of both male and female flowers. Male and female flowers showed differences in visit frequency, which decreases as flower damage increases. Reproductive success was negatively related to the level of damage. We found that florivory is common in the population of S. lancifolia, which can exert a strong selective pressure by making the flowers less attractive and reducing the number of seeds per fruit. Future studies are needed to know how florivores affect plant male fitness.

2.
J Exp Biol ; 225(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36478243

RESUMO

Visual animal communication, whether to the same or to other species, is largely conducted through dynamic and colourful signals. For a signal to be effective, the signaller must capture and retain the attention of the receiver. Signal efficacy is also dependent on the sensory limitations of the receiver. However, most signalling studies consider movement and colour separately, resulting in a partial understanding of the signal in question. We explored the structure and function of predator-prey signalling in the jumping spider-tephritid fly system, where the prey performs a wing waving display that deters an attack from the predator. Using a custom-built spider retinal tracker combined with visual modelling, as well as behavioural assays, we studied the effect of fly wing movement and colour on the jumping spider's visual system. We show that jumping spiders track their prey less effectively during wing display and this can be attributed to a series of fluctuations in chromatic and achromatic contrasts arising from the wing movements. These results suggest that displaying flies deter spider attacks by manipulating the movement biases of the spider's visual system. Our results emphasise the importance of receiver attention on the evolution of interspecific communication.


Assuntos
Dípteros , Aranhas , Animais , Comportamento Predatório , Comportamento Animal , Comunicação Animal
3.
Sci Rep ; 11(1): 15442, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326422

RESUMO

Ambush predators depend on cryptic body colouration, stillness and a suitable hunting location to optimise the probability of prey capture. Detection of cryptic predators, such as crab spiders, by flower seeking wasps may also be hindered by wind induced movement of the flowers themselves. In a beach dune habitat, Microbembex nigrifrons wasps approaching flowerheads of the Palafoxia lindenii plant need to evaluate the flowers to avoid spider attack. Wasps may detect spiders through colour and movement cues. We tracked the flight trajectories of dune wasps as they approached occupied and unoccupied flowers under two movement conditions; when the flowers were still or moving. We simulated the appearance of the spider and the flower using psychophysical visual modelling techniques and related it to the decisions made by the wasp to land or avoid the flower. Wasps could discriminate spiders only at a very close range, and this was reflected in the shape of their trajectories. Wasps were more prone to making errors in threat assessment when the flowers are moving. Our results suggest that dune wasp predation risk is augmented by abiotic conditions such as wind and compromises their early detection capabilities.

4.
Biosci. j. (Online) ; 32(3): 730-739, may/june 2016. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-965515

RESUMO

Although there is a large diversity of plant species with extrafloral nectaries, histological detail of these glands is poorly documented in tropical rain forest species. We characterized extrafloral nectaries using digital photographs, scanning electron microscopy and histological methods for eight plant species belonging to the Costaceae, Euphorbiaceae, Malvaceae and Salicaceae. To our knowledge, there are no previous reports on the structure of extrafloral nectaries for these species. Croton species exhibited reddish extrafloral nectaries on the petioles, surrounded by starshaped trichomes. Cnidoscolus multilobus and Omphalea oleifera showed green, elevated, extrafloral nectaries at the peduncle; C. multilobus showed abundant secretory tissue; O. oleifera revealed numerous cells with calcium oxalate crystals. Heliocarpus species showed extrafloral nectaries distributed at the base of the blade and possesses glands in the center of the extrafloral nectary surrounded by a series of parenchymatic cells. Pleuranthodendron lindenii has two extrafloral nectaries at the base of the leaves. Costus scaber has a hollow-type extrafloral nectary on the red-colored bracts of the inflorescence; nectar cavity is found in the center area of each bracts located on a yellow line. The extrafloral nectaries described in this study exhibited different morphologies and histological structures involved in the secretion of extrafloral nectar that could be related to biotic defenses, primarily by attracting ants.


Embora exista uma grande diversidade de espécies de plantas com nectários extraflorais, detalhes histológicos destas glândulas ainda é pouco documentado para espécies tropicais. Nós caracterizamos nectários extraflorais usando fotografias digitais, microscopia eletrônica de varredura e métodos histológicos para oito espécies de plantas das famílias Costaceae, Euphorbiaceae, Malvaceae e Salicaceae. Para nosso conhecimento, não há relatos anteriores sobre a estrutura dos nectários extraflorais para as espécies estudadas. Espécies de Croton exibiram nectários extraflorais avermelhadas nos pecíolos, rodeados por tricomas em forma de estrela. Cnidoscolus multilobus e Omphalea oleifera apresentaram nectários extraflorais verdes e elevados nos pedúnculos; C. multilobus apresenta tecido secretor abundante enquanto que O. oleifera apresentou numerosas células com cristais de oxalato de cálcio. Espécies de Heliocarpus apresentaram nectários extraflorais distribuídos na base da lâmina e possuíam glândulas no centro do nectário rodeadas por uma série de células de parênquima. Pleuranthodendron lindenii apresentou dois nectários extraflorais na base das folhas. Costus scaber apresenta um nectário extrafloral do tipo oco nas brácteas avermelhadas da inflorescência, e a cavidade do nectário se encontra na área central de cada bráctea localizados em uma linha amarela. Os nectários extraflorais descritos neste estudo apresentaram morfologia e estruturas histológicas diferentes envolvidas na secreção de néctar extrafloral que poderia estar relacionado com defesas bióticas, principalmente atraindo formigas.


Assuntos
Árvores , Euphorbiaceae , Malvaceae , Salicaceae , Floresta Úmida , Néctar de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...