Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Am Mosq Control Assoc ; 40(1): 71-74, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38332553

RESUMO

Aedes albopictus is a vector of several pathogens of significant public health concern. In this situation, gravid traps have become a common surveillance tool for Aedes spp., which commonly use hay infusions as an attractant. Diverse grass infusions have been assessed to enhance the attraction to this vector mosquito. However, these studies have focused on the oviposition effect, and the attraction potential to gravid Ae. albopictus females has not been evaluated yet. Here we report the attractiveness of infusions of 4 different botanical species (Cenchrus purpureus, Cyanodon dactylon, Megathyrus maximus, Pennisetum ciliare) as baits in sticky ovitraps and autocidal gravid ovitraps (AGOs) under laboratory, semifield, and field conditions. In the laboratory, Cynodon dactylon showed attractiveness, whereas in semifield conditions, both C. dactylon and Megathyrsus maximus were similarly attractive for gravid Ae. albopictus. None of the infusions conducted with AGOs were able to lure Ae. albopictus and other species of mosquitoes in a 14-wk field experiment. Our results demonstrate the feasibility of finding more attractive infusions for Ae. albopictus females to improve the efficacy of AGO traps, but further testing of infusions in AGOs in field settings is needed.


Assuntos
Aedes , Poaceae , Feminino , Animais , Mosquitos Vetores , Oviposição , Controle de Mosquitos
2.
J Am Mosq Control Assoc ; 39(3): 157-167, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603406

RESUMO

Aedes aegypti and Culex quinquefasciatus are disease vectors distributed throughout much of the world and are responsible for a high burden of vector-borne disease, which has increased during the last 2 decades. Most pathogens vectored by these mosquitoes do not have therapeutic remedies; thus, combating these diseases is dependent upon vector control. Improvements in vector control strategies are urgently needed, but these hinge on understanding the biology and ecology of Ae. aegypti and Cx. quinquefasciatus. Both species have been extensively investigated, but further knowledge on diel resting activity of these vectors can improve vector surveillance and control tools for targeting resting vector populations. From April to December 2021, we determined outdoor daytime resting habits of Ae. aegypti and Cx. quinquefasciatus male, female, and blood-fed female populations in Reynosa, Mexico, using large red odor-baited wooden box traps. The daytime resting activity for Ae. aegypti males, females, and blood-fed females was restricted to a period between 0900 h and 1300 h, with a peak at 0900 h, while the resting activity of Cx. quinquefasciatus male, female, and blood-fed females was between 0700 h and 1100 h, with a peak at 0700 h. A generalized additive model was developed to relate relative humidity and temperature to resting Cx. quinquefasciatus and Ae. aegypti male, female, and blood-fed populations caught in traps. This study advances the understanding of outdoor resting behavior for 2 important vector mosquito species and discusses future studies to fill additional knowledge gaps.

3.
Emerg Infect Dis ; 29(7): 1443-1446, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347822

RESUMO

We found serologic evidence of spotted fever group Rickettsia in humans and dogs and typhus group Rickettsia in dogs in Reynosa, Mexico. Our investigation revealed serologic samples reactive to spotted fever group Rickettsia in 5 community members, which highlights a potential rickettsial transmission scenario in this region.


Assuntos
Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Tifo Epidêmico Transmitido por Piolhos , Humanos , Animais , Cães , Rickettsia/genética , México/epidemiologia , Anticorpos Antibacterianos , Rickettsiose do Grupo da Febre Maculosa/diagnóstico , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/veterinária
4.
J Vector Ecol ; 48(1): 52-58, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255359

RESUMO

We developed a biological control method directed toward Aedes aegypti using the release of Metarhizium anisopliae-contaminated males to spread the fungus to wild females. A generalized Poisson model was used to relate Ae. aegypti marked females (MKF) to M. anisopliae-exposed males (FEM). In a mark-recapture parallel arm trial, FEM release was a better predictor than unexposed male (UM) releases to forecast MKF by FEM. Total females (TF), marked males (MKM), and wild males (WM) as predictors were counted in human-landings in 15 households treated with 40 FEM each, vs 40 UM released/household/week in 15 households for eight weeks. Fit of MKF to standard, generalized Poisson (GP), and negative binomial models/arm built by TF, MKM, WM, and interactions as predictors were computed. In both arms, MKF was better modeled by GP, which in treated, all but one of the eight observed data fell within the confidence intervals predicted by the model. However, the control GP had two outliers and MKM as a single predictor. Likewise, the pseudo-R2 measures of 95% and 46% for treated and control groups also showed that the GP with FEM was more suitable to predict MKF. It should thus be possible to use the GP model to indirectly estimate that an increase of one TF or one fungus-exposed male would increase the number of marked-females by 8% or 9%, respectively, while wild males were an irrelevant predictor to the model.


Assuntos
Aedes , Metarhizium , Masculino , Humanos , Feminino , Animais , Controle de Mosquitos/métodos
5.
Insects ; 13(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555044

RESUMO

In Latin America, Mexico is the country with the second highest annual estimated number of Chagas disease cases, caused by Trypanosoma cruzi, due to vector-borne transmission. The state of Oaxaca is the location of the first documented human cases of Chagas disease in Mexico and contained the highest T. cruzi seropositive rate (3.5%) from blood donors. Here, entomological surveys, from 2017 to 2019, were conducted to collect triatomines in 124 villages of 60 municipalities. Four principal domestic Triatoma spp. (Hemiptera: Triatominae), Triatoma phyllosoma, T. barberi, T. mazzotti, and T. dimidiata, of Oaxaca, Mexico were identified by morphology and molecular analysis of the barcode region of the cytochrome oxidase 1 (cox1 or COI or CO1) gene. A total of 41 out of 83 T. phyllosoma specimens examined by microscopy were positive for T. cruzi (49%), 49 out of 171 for T. barberi (28%), 31 out of 177 for T. mazzotti (17%), and none out of 10 for T. dimidiata (0%). Overall, the infestation index was 3.1% of households containing at least one triatomine; the crowding index was a mean of two Triatoma spp./household; and the colonization index was 0.38 for households based on presence of nymphs. Geographical distribution of triatomines in Oaxaca at the municipality level and endophilic behavior is also reported. Precise identification, endophilic habits, and infection rates of these triatomines are paramount for vector control programs of the Ministry of Health of Oaxaca and beyond.

6.
Trop Med Infect Dis ; 7(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36288002

RESUMO

Few reports exist on the COVID-19 epidemiology of migrant populations. We tested 370 migratory individuals from ten countries arriving at a migrant house along the US-Mexico border based on a rapid assay detecting SARS-CoV-2 antigen. Fifty-six were positive, for a prevalence of 15.1% (95%-CIs of 11.8-19.2%). Only 21 positive persons presented signs or symptoms associated with the infection (95%-CIs = 25-49%). Most (51.7%) positive migrants arrived in the previous two days before being tested, indicating that the virus infection was acquired during their transit. Out of the total of 56 positive individuals, 37.5% were from El Salvador, 33.9% from Honduras, and 21.4% from Guatemala. This study suggests that vulnerable populations traveling from countries in Latin America and seeking residence in the US are high-risk individuals for exposure to SARS-CoV-2. The rapid antigen COVID-19 testing on arrival at the migrant house, and subsequent 10-day quarantine, was a critical step to help minimize further transmission. Therefore, the present study demonstrates that public health services provided to migratory and vulnerable populations are necessary for pandemic control.

7.
J Fungi (Basel) ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36012816

RESUMO

Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults' attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.

9.
J Am Mosq Control Assoc ; 37(4): 198-207, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817614

RESUMO

Accurate identification of mosquito species is essential to support programs that involve the study of distribution and mosquito control. Numerous mosquito species are difficult to identify based only on morphological characteristics, due to the morphological similarities in different life stages and large numbers of some species that are members of morphologically similar species complexes. In the present study, the mosquitoes collected in the Pantanos de Centla Biosphere Reserve, southeastern Mexico, were evaluated using a combination of morphological and molecular approaches (mitochondrial cytochrome c oxidase subunit I [COI] DNA barcode). A total of 1,576 specimens of 10 genera and 35 species, mostly adult stages, were collected. A total of 225 COI DNA barcode sequences were analyzed; most species formed well-supported groups in the neighbor joining, maximum likelihood, and Bayesian inference trees. The intraspecific Kimura 2-parameter (K2P) genetic distance averaged 1.52%. An intraspecific K2P distance of 6.20% was observed in Anopheles crucians s.l., while a deep split was identified in Culex erraticus and Cx. conspirator. This study showed that COI DNA barcodes offer a reliable approach to support mosquito species identification in Mexico.


Assuntos
Culex , Código de Barras de DNA Taxonômico , Animais , Teorema de Bayes , Culex/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , México , Filogenia
10.
Res Rep Trop Med ; 12: 235-245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737667

RESUMO

We present a historical review of two neglected tropical diseases (NTD), namely, onchocerciasis and trachoma, both which were successfully eliminated in Mexico. In addition, we present a cost-effectiveness assessment (CEA) demonstrating that these were worthwhile health interventions. Historically, an estimate of $310.68 and $38.92 per person were spent during the period of time the onchocerciasis and trachoma elimination programs operated, respectively.

11.
Front Cell Infect Microbiol ; 11: 616679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996617

RESUMO

Introduction: Effective control of Aedes aegypti will reduce the frequency and severity of outbreaks of dengue, chikungunya, and Zika; however, control programs are increasingly threatened by the rapid development of insecticide resistance. Thus, there is an urgent need for novel vector control tools, such as auto-dissemination of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. The aim of this study was to estimate contact rates of M. anisopliae-exposed males with wild female Ae. aegypti. As a control the contact rates of untreated males with wild females was contrasted. Methods: The study was conducted in Reynosa, Mexico. The treatment and control households (n = 15 per group) were geographically separated by an arid and hot area that naturally prevented the flight of males between arms. In each control household, 40 M. anisopliae-exposed male Ae. aegypti were released per week for 8 weeks (specimens were exposed to a concentration of 5.96 × 107 conidia/cm2 for 24 h; n = 4,800 males). In each control household, 40 untreated males were released per week for 8 weeks (n = 4,800 males). All specimens were dust-marked prior to release. Mosquito abundance was monitored with human landing collections, and captured Ae. aegypti were examined for any dust-marking. Results: In the treatment households, the contact rate of Ae. aegypti females with marked, fungus-treated males was 14% (n = 29 females marked from 197). Where in the control households, the contact rate of females with marked, untreated males was only 6% (n = 22 marked from 365). In the treatment households the recapture rate of released males was at 5% and higher than that for the control households (which was 2%). Auto-dissemination of M. anisopliae from infected males to female Ae. aegypti was demonstrated through the recovery of an infected female from the floor of a household. Conclusions: Overall, the contact rate between M. anisopliae-infected males with the natural female population was 60% higher than for the control group of healthy males. The results provide further support to the release of fungus-exposed males as a potentially useful strategy against Ae. aegypti, though further research is required.


Assuntos
Aedes , Metarhizium , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Masculino , México , Controle de Mosquitos , Mosquitos Vetores
12.
Front Bioeng Biotechnol ; 9: 638902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855014

RESUMO

During the COVID-19 pandemic, a certified laboratory of Tamaulipas, Mexico has processed over 100,000 samples of COVID-19 suspected patients, working a minimum of 100 tests daily. Thus, it would be beneficial for such certified laboratories nationwide to reduce the time and cost involved in performing the diagnosis of COVID-19, from sample collection, transportation to local lab, processing of samples, and data acquisition. Here, 30 nasopharyngeal swab and saliva samples from the same COVID-19 individuals were assessed by a standard nucleic acid extraction protocol, including protein lysis with proteinase K followed by binding to column, washing, and elution, and by the SalivaDirect protocol based on protein lysis, skipping the other steps to reduce processing time and costs. The genomic RNA was amplified using a SARS-CoV-2 Real-Time PCR kit. A variation (P > 0.05) in the 95% CIs = 72.6%-96.7% was noted by using the SalivaDirect protocol and saliva samples (sensitivity of 88.2%) in comparison to those of standard protocol with oropharyngeal swab samples (95% CIs = 97.5%-100%; sensitivity of 100%) as reported elsewhere. However, when using nasopharyngeal swab samples in the SalivaDirect protocol (sensitivity of 93.6%; 95% CIs = 79.2%-99.2%), it was in concordance (P < 0.05) with those of the standard one. The logical explanation to this was that two samples with Ct values of 38, and 40 cycles for gene E produced two false negatives in the SalivaDirect protocol in relation to the standard one; thus, there was a reduction of the sensitivity of 6.4% in the overall assay performance.

13.
Acta Trop ; 213: 105730, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33096064

RESUMO

Mosquitoes are commonly identified to species level using morphological traits, but complementary methods for identification are often necessary when specimens are collected as immature stages, stored inadequately, or when delineation of species complexes is problematic. DNA-barcoding using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene is one such tool used for the morphological identification of species. A comprehensive entomological survey of mosquito species in Mexico State identified by COI DNA barcoding and morphology is documented in this paper. Specimens were collected from all the physiographic provinces in Mexico State between 2017 and 2019. Overall, 2,218 specimens were collected from 157 localities representing both subfamilies Anophelinae and Culicinae. A species checklist that consists of 6 tribes, 10 genera, 20 subgenera, and 51 species, 35 of which are new records for Mexico State, is provided. Three hundred and forty-two COI sequences of 46 species were analysed. Mean intraspecific and interspecific distances ranged between 0% to 3.9% and from 1.2% to 25.3%, respectively. All species groups were supported by high bootstraps values in a Neighbour-Joining analysis, and new COI sequences were generated for eight species: Aedes chionotum Zavortink, Ae. vargasi Schick, Ae. gabriel Schick, Ae. guerrero Berlin, Ae. ramirezi Vargas and Downs, Haemagogus mesodentatus Komp and Kumm, Culex restrictor Dyar and Knab, and Uranotaenia geometrica Theobald. This study provides a detailed inventory of the Culicidae from Mexico State and discusses the utility of DNA barcoding as a complementary tool for accurate mosquito species identification in Mexico.


Assuntos
Culicidae/classificação , Código de Barras de DNA Taxonômico , Aedes/anatomia & histologia , Aedes/classificação , Aedes/genética , Animais , Anopheles/anatomia & histologia , Anopheles/classificação , Anopheles/genética , Culex/anatomia & histologia , Culex/classificação , Culex/genética , Culicidae/anatomia & histologia , Culicidae/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Genes Mitocondriais , Masculino , México , Mitocôndrias/enzimologia , Mitocôndrias/genética
14.
Insects ; 11(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265904

RESUMO

The eggs parasitoids Myartsevaia chrysopae (Crawford) (Hymenoptera: Encyrtidae), Telenomus lobatus Johnson, Telenomus tridentatus Johnson (Hymenoptera: Scelionidae) and Trichogramma atopovirilia Oatman and Platner (Hymenoptera: Trichogrammatidae) are reported for the first time or in new localities in Mexico. Their occurrence was first discovered in 2018 during a survey of parasitism on chrysopid eggs, conducted on Sorghum bicolor L. Moench (Poales: Poaceae) and Zea mays L. (Poales: Poaceae) in different locations in Sinaloa, Mexico. The identity of the parasitoids was determined by morphology and for both species of Telenomus the barcode region of the cytochrome oxidase 1 gene (CO1) was generated to facilitate molecular diagnosis of these species in future studies.

15.
PLoS Negl Trop Dis ; 14(12): e0008867, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382725

RESUMO

BACKGROUND: Aedes aegypti mosquito-borne viruses including Zika (ZIKV), dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV) have emerged and re-emerged globally, resulting in an elevated burden of human disease. Aedes aegypti is found worldwide in tropical, sub-tropical, and temperate areas. The characterization of mosquito blood meals is essential to understand the transmission dynamics of mosquito-vectored pathogens. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report Ae. aegypti and Culex quinquefasciatus host feeding patterns and arbovirus transmission in Northern Mexico using a metabarcoding-like approach with next-generation deep sequencing technology. A total of 145 Ae. aegypti yielded a blood meal analysis result with 107 (73.8%) for a single vertebrate species and 38 (26.2%) for two or more. Among the single host blood meals for Ae. aegypti, 28.0% were from humans, 54.2% from dogs, 16.8% from cats, and 1.0% from tortoises. Among those with more than one species present, 65.9% were from humans and dogs. For Cx. quinquefasciatus, 388 individuals yielded information with 326 (84%) being from a single host and 63 (16.2%) being from two or more hosts. Of the single species blood meals, 77.9% were from dogs, 6.1% from chickens, 3.1% from house sparrows, 2.4% from humans, while the remaining 10.5% derived from other 12 host species. Among those which had fed on more than one species, 11% were from dogs and humans, and 89% of other host species combinations. Forage ratio analysis revealed dog as the most over-utilized host by Ae. aegypti (= 4.3) and Cx. quinquefasciatus (= 5.6) and the human blood index at 39% and 4%, respectively. A total of 2,941 host-seeking female Ae. aegypti and 3,536 Cx. quinquefasciatus mosquitoes were collected in the surveyed area. Of these, 118 Ae. aegypti pools and 37 Cx. quinquefasciatus pools were screened for seven arboviruses (ZIKV, DENV 1-4, CHIKV, and West Nile virus (WNV)) using qRT-PCR and none were positive (point prevalence = 0%). The 95%-exact upper limit confidence interval was 0.07% and 0.17% for Ae. aegypti and Cx. quinquefasciatus, respectively. CONCLUSIONS/SIGNIFICANCE: The low human blood feeding rate in Ae. aegypti, high rate of feeding on mammals by Cx. quinquefasciatus, and the potential risk to transmission dynamics of arboviruses in highly urbanized areas of Northern Mexico is discussed.


Assuntos
Aedes/virologia , Infecções por Arbovirus/veterinária , Arbovírus/fisiologia , Culex/virologia , Vertebrados/virologia , Animais , Infecções por Arbovirus/sangue , Infecções por Arbovirus/transmissão , Código de Barras de DNA Taxonômico , Comportamento Alimentar , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Modelos Biológicos , Mosquitos Vetores/virologia , Especificidade da Espécie , Vertebrados/sangue
16.
Viruses ; 12(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316394

RESUMO

Mosquito-borne viruses are emerging or re-emerging globally, afflicting millions of people around the world. Aedes aegypti, the yellow fever mosquito, is the principal vector of dengue, Zika, and chikungunya viruses, and has well-established populations across tropical and subtropical urban areas of the Americas, including the southern United States. While intense arboviral epidemics have occurred in Mexico and further south in the Americas, local transmission in the United States has been minimal. Here, we study Ae. aegypti and Culex quinquefasciatus host feeding patterns and vertebrate host communities in residential environments of South Texas to identify host-utilization relative to availability. Only 31% of Ae. aegypti blood meals were derived from humans, while 50% were from dogs and 19% from other wild and domestic animals. In Cx. quinquefasciatus, 67% of blood meals were derived from chicken, 22% came from dogs, 9% from various wild avian species, and 2% from other mammals including one human, one cat, and one pig. We developed a model for the reproductive number, R0, for Zika virus (ZIKV) in South Texas relative to northern Mexico using human disease data from Tamaulipas, Mexico. We show that ZIKV R0 in South Texas communities could be greater than one if the risk of human exposure to Ae. aegypti bites in these communities is at least 60% that of Northern Mexico communities. The high utilization of non-human vertebrates and low risk of human exposure in South Texas diminishes the outbreak potential for human-amplified urban arboviruses transmitted by Ae. aegypti.


Assuntos
Aedes/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/fisiologia , Aedes/classificação , Animais , Geografia Médica , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Modelos Teóricos , Texas/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Infecção por Zika virus/epidemiologia
17.
PLoS Negl Trop Dis ; 14(1): e0008008, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999704

RESUMO

BACKGROUND: All formerly endemic communities of the Southern Chiapas focus of onchocerciasis in Mexico were treated with ivermectin until parasite transmission was eliminated by 2015. Transmission of onchocerciasis did not resume during a period of three years (2012-2014) following the final distribution of ivermectin in 2011; it was thus concluded that transmission remained undetectable without intervention. WHO thus declared the elimination of transmission of onchocerciasis from Mexico in 2015. METHODOLOGY/PRINCIPAL FINDINGS: From 2016 to the present, post-elimination surveillance (PES) based on examination for suspected onchocercomas was performed in the former Southern Chiapas focus. Each year, over 60% of the total population (range = 85,347-104,106 individuals) of the formerly endemic communities were examined for onchocercomas. Thirty-four individuals were found harboring suspected onchocercomas in the PES surveys conducted from 2016-2019. Of these, one female of 7 years of age who had immigrated from a formerly endemic focus, harbored an infertile (sterile) female in the suspected onchocercoma; all others were negative. Skin biopsy assessments were performed from March through May 2017 in three communities where the female resided. None of the 83 individuals of the three communities examined by skin biopsy were mf positive. Similarly, none of the biopsies from the individuals were found to contain parasite DNA when tested by polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA). CONCLUSIONS/SIGNIFICANCE: These provide support to the conclusion that onchocerciasis has been eliminated from Mexico.


Assuntos
Ivermectina/uso terapêutico , Onchocerca volvulus , Oncocercose/tratamento farmacológico , Oncocercose/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , DNA de Helmintos/genética , Erradicação de Doenças , Feminino , Humanos , Lactente , Ivermectina/administração & dosagem , Masculino , Administração Massiva de Medicamentos , México/epidemiologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Pele/parasitologia , Adulto Jovem
18.
Front Vet Sci ; 7: 564791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33778029

RESUMO

There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector-host-pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase-polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host-vector-pathogen interactions.

19.
Ecol Evol ; 9(23): 13543-13554, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871665

RESUMO

Leishmaniasis, a vector-borne disease transmitted to humans through the bite of phlebotomine sand flies, is of public health significance in southeastern Mexico. Active and continuous monitoring of vectors is an important aspect of disease control for the prediction of potential outbreaks. Thus, the correct identification of vectors is paramount in this regard. In this study, we employed DNA barcoding as a tool for identifying phlebotomine sand flies collected in localized cutaneous leishmaniasis endemic areas of Quintana Roo, Mexico. Specimens were collected using CDC light and Shannon traps as part of the Mexican Ministry of Health surveillance program. DNA extraction was carried out using a nondestructive protocol, and morphological identification based on taxonomic keys was conducted on slide-mounted specimens. Molecular taxonomic resolution using the 658-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was 100% congruent with the morphological identification. Seven species were identified: Lutzomyia cruciata (Coquillett 1907), Lutzomyia longipalpis (Lutz & Neiva 1912), Psathyromyia shannoni (Dyar 1929), Dampfomyia deleoni (Fairchild & Hertig 1947), Dampfomyia beltrani/steatopyga (Vargas & Díaz-Nájera 1951), Bichromomyia olmeca olmeca (Vargas & Díaz-Nájera, 1959), and Brumptomyia mesai (Sherlock 1962). Mean intraspecific divergence ranged from 0.12% to 1.22%, while interspecific distances ranged from 11.59% to 19.29%. Neighbor-joining (NJ) analysis using the Kimura 2-parameter model also showed specimens of the same species to be clustered together. The study provides the first cox1 sequences for three species of sand flies and indicates the utility of DNA barcoding for phlebotomine sand flies species identification in southeastern Mexico.

20.
J Vector Ecol ; 44(1): 57-67, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31124227

RESUMO

To document and update the mosquito species of Tabasco, Mexico, field collection trips were conducted in the two physiographic regions of Tabasco: the coastal plain of the southern gulf and the mountains of Chiapas and Guatemala. Mosquitoes were collected as immature and adult stages during the dry and rainy seasons from 2014 through 2015. Additionally, the Reference Collection of Arthropods of Medical Importance (CAIM-InDRE) containing mosquitoes of Tabasco was re-examined. In total, 4,913 specimens were collected and examined, which are divided into seven tribes, 18 genera, 27 subgenera, and 104 species. Of these, one genus (Shannoniana Lane and Cerqueira), two subgenera (Georgecraigius Reinert, Harbach and Kitching, and Carrollia Lutz), and 21 species are new records for the mosquito fauna of Tabasco. Culex metempsytus Dyar is a new record for Mexico and Wyeomyia jocosa (Dyar and Knab) is removed from the Mexican mosquito fauna. Seventeen species historically reported were not found in the field collections conducted here. Taxonomic notes, new distribution limits, and comments about the medical importance of species of mosquitoes of Tabasco are discussed. Tabasco is the second state in Mexico with the largest mosquito richness (104 species), followed by Veracruz with 139 species.


Assuntos
Culicidae/classificação , Mosquitos Vetores , Viroses/transmissão , Distribuição Animal , Animais , Culicidae/fisiologia , Humanos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...