Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(15): 7933-7946, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573738

RESUMO

Aqueous mixtures of oppositely charged polyelectrolytes and surfactants are useful in many industrial applications, such as shampoos and hair conditioners. In this work, we investigate the friction between biomimetic hair surfaces in the presence of adsorbed complexes formed from cationic polyelectrolytes and anionic surfactants in an aqueous solution. We apply nonequilibrium molecular dynamics (NEMD) simulations using the coarse-grained MARTINI model. We first developed new MARTINI parameters for cationic guar gum (CGG), a functionalized, plant-derived polysaccharide. The complexation of CGG and the anionic surfactant sodium dodecyl sulfate (SDS) on virgin and chemically damaged biomimetic hair surfaces was studied using a sequential adsorption approach. We then carried out squeeze-out and sliding NEMD simulations to assess the boundary lubrication performance of the CGG-SDS complex compressed between two hair surfaces. At low pressure, we observe a synergistic friction behavior for the CGG-SDS complex, which gives lower shear stress than either pure CGG or SDS. Here, friction is dominated by viscous dissipation in an interfacial layer comprising SDS and water. At higher pressures, which are probably beyond those usually experienced during hair manipulation, SDS and water are squeezed out, and friction increases due to interdigitation. The outcomes of this work are expected to be beneficial to fine-tune and screen sustainable hair care formulations to provide low friction and therefore a smooth feel and reduced entanglement.

2.
Phys Chem Chem Phys ; 25(33): 21916-21934, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581271

RESUMO

The properties of solid-liquid interfaces can be markedly altered by surfactant adsorption. Here, we use molecular dynamics (MD) simulations to study the adsorption of ionic surfactants at the interface between water and heterogeneous solid surfaces with randomly arranged hydrophilic and hydrophobic regions, which mimic the surface properties of human hair. We use the coarse-grained MARTINI model to describe both the hair surfaces and surfactant solutions. We consider negatively-charged virgin and bleached hair surface models with different grafting densities of neutral octadecyl and anionic sulfonate groups. The adsorption of cationic cetrimonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) surfactants from water are studied above the critical micelle concentration. The simulated adsorption isotherms suggest that cationic surfactants adsorb to the surfaces via a two-stage process, initially forming monolayers and then bilayers at high concentrations, which is consistent with previous experiments. Anionic surfactants weakly adsorb via hydrophobic interactions, forming only monolayers on both virgin and medium bleached hair surfaces. We also conduct non-equilibrium molecular dynamics simulations, which show that applying cationic surfactant solutions to bleached hair successfully restores the low friction seen with virgin hair. Friction is controlled by the combined surface coverage of the grafted lipids and the adsorbed CTAB molecules. Treated surfaces containing monolayers and bilayers both show similar friction, since the latter are easily removed by compression and shear. Further wetting MD simulations show that bleached hair treated with CTAB increases the hydrophobicity to similar levels seen for virgin hair. Treated surfaces containing CTAB monolayers with the tailgroups pointing predominantly away from the surface are more hydrophobic than bilayers due to the electrostatic interactions between water molecules and the exposed cationic headgroups.

3.
Nanoscale ; 15(15): 7086-7104, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36987934

RESUMO

We investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated silica surfaces functionalised with monolayers formed from either octadecyl or sulfonate groups, which are representative of the surfaces of virgin and ultimately bleached hair, respectively. In the simulations, friction is monitored between coarse-grained model hair surfaces with different levels of chemical damage, where a specified amount of grafted octadecyl groups are randomly replaced with sulfonate groups. The sliding velocity dependence of friction in the simulations can be described using an extended stress-augmented thermally activation model. As the damage level increases in the simulations, the friction coefficient generally increases, but its sliding velocity-dependence decreases. At low sliding velocities, which are closer to those encountered experimentally and physiologically, we observe a monotonic increase of the friction coefficient with damage ratio, which is consistent with our new experiments using biomimetic surfaces and previous ones using real hair. This observation demonstrates that modified surface chemistry, rather than roughness changes or subsurface damage, control the increase in nanoscale friction of bleached or chemically damaged hair. We expect the methods and biomimetic surfaces proposed here to be useful to screen the tribological performance of hair care formulations both experimentally and computationally.


Assuntos
Biomimética , Cabelo , Humanos , Propriedades de Superfície , Fricção , Cabelo/química , Microscopia de Força Atômica/métodos
4.
J Mol Biol ; 433(10): 166902, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33667509

RESUMO

Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.


Assuntos
DNA/química , Heterocromatina/química , Histonas/química , Nucleossomos/química , Animais , Sítios de Ligação , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
6.
J Phys Chem B ; 121(32): 7741-7748, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28731710

RESUMO

We revisit the mechanism for cononsolvency of PNIPAM in water/methanol mixtures. Using extensive molecular dynamics simulations, we calculate the calorimetric enthalpy of the PNIPAM collapse transition and observe a unique fingerprint of PNIPAM cononsolvency which is analyzed in terms of microscopic interactions. We find that polymer hydration is the determining factor for PNIPAM collapse in the cononsolvency regime. In particular, it is shown that methanol frustrates the ability of water to form hydrogen bonds with the amide proton and therefore causes polymer collapse.

7.
Soft Matter ; 13(12): 2289-2291, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28262864

RESUMO

In a recent paper, Mukherji et al. describe the collapse of poly(N-isopropyl acrylamide) in methanol-water mixtures based on experiments and molecular dynamics simulations. The conclusion of their work is that chain collapse is dominated by enthalpic bridging interactions while entropic effects play no major role. Here we show that this claim arises from an improper interpretation of preferential binding and the corresponding thermodynamic data presented. When interpreted correctly, the data instead provide evidence for repulsive enthalpic interactions of methanol with the polymer, supporting the emerging view of entropic chain collapse.

9.
J Phys Chem B ; 120(34): 8757-67, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27482971

RESUMO

Trimethylamine N-oxide (TMAO) is a protective osmolyte able to preserve protein folded states in the presence of denaturants like urea and under extreme thermodynamic conditions of high pressure and temperature. The current understanding posits that TMAO exerts its stabilizing effect on proteins by preferential exclusion from the macromolecular hydration shell. Additionally, TMAO is also known to favor the folding of hydrophobic polymers. In this latter case, theoretical and experimental studies support a scenario in which TMAO directly interacts with the macromolecule. While atomistic simulations may potentially elucidate the precise TMAO-induced stabilization mechanism, the comparative accuracy of the different TMAO force field models available in the literature remains elusive. Herein, we compare four different TMAO models, study their structural hydration properties, and validate the models against experimental osmotic coefficients and air-water surface tension data over a broad range of TMAO concentrations. The models were furthermore applied to study the effect of TMAO on the folding equilibrium of a generic hydrophobic polymer in aqueous solution. Interestingly, we find that TMAO increasingly stabilizes the compact globular state of the polymer up to approximately 1 M TMAO, while in turn destabilizing it with further increase in TMAO concentration. Hence, TMAO acts as a stabilizing osmolyte or as a denaturant depending on the TMAO concentration of the solution. TMAO-induced stabilization up to 1 M is accompanied by positive preferential TMAO binding and with an increase in the chain configurational entropy, which is reduced at concentrations higher than 1 M. These results are qualitatively independent of the TMAO force field.

10.
J Phys Chem B ; 119(51): 15780-8, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26619003

RESUMO

We propose a physical mechanism for co-nonsolvency of a stimulus-responsive polymer in water/methanol mixed solution based on results obtained with molecular simulations. Even though the phenomenon is well known, the mechanism behind co-nonsolvency is still under debate. Herein, we study co-nonsolvency of poly(N-isopropylacrylamide) (PNiPAM) in methanol aqueous solutions, the most widely studied and experimentally well-characterized system. Our results show that at low alcohol content of the solution methanol preferentially binds to the PNiPAM globule and drives polymer collapse. The energetics of electrostatic, hydrogen bonding, or bridging-type interactions with the globule is found to play no role. Instead, preferential methanol binding results in a significant increase in the globule's configurational entropy, stabilizing methanol-enriched globular structures over wet globular structures in neat water. This mechanism drives the reduction of the lower critical solution temperature with increasing methanol content in the co-nonsolvency regime and eventually leads to polymer collapse. The globule-to-coil re-entrance at high methanol concentrations is instead driven by changes in solvent-excluded volume of the coil and globular states imparted by a decrease in solvent density with increasing methanol content of the solution: with increasing proportion of larger solvent particles (methanol), the entropic (cavity formation) cost of redistributing solvent molecules upon polymer re-entrance becomes smaller. This effect provides a natural explanation for the experimentally observed dependence of the re-entrance transition on chain molecular weight.

11.
Phys Chem Chem Phys ; 17(13): 8491-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25684267

RESUMO

Stabilization of macromolecular folded states in solution by protective osmolytes has been traditionally explained on the basis of preferential osmolyte depletion from the macromolecule's first solvation shell. However recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. An example is the stabilization of the collapsed globular state of poly(N-isopropylacrylamide) (PNiPAM) by urea in aqueous solution. Based on Molecular Dynamics simulations we have characterized the mechanism through which urea stabilizes the collapsed state of PNiPAM in water. Analysis and comparison of the different components of the excess chemical potentials of folded and unfolded PNiPAM chains in aqueous urea solutions indicates that enthalpic interactions play no role in stabilizing the collapsed state. We instead find that with increasing urea, solvation of the unfolded state is entropically penalized over solvation of the folded state, thereby shifting the folding equilibrium in favour of the folded state. The unfavourable entropy contribution to the excess chemical potential of unfolded PNiPAM chains results from two urea effects: (1) an increasing cost of cavity formation with increasing urea, (2) larger fluctuations in the energy component corresponding to PNiPAM-(co)solvent attractive interactions. These energy fluctuations are particularly relevant at low urea concentrations (<3 M) and result from attractive polymer-urea van der Waals interactions that drive the formation of "urea clouds" but bias the spatial distribution of urea and water molecules with a corresponding reduction of the entropy. We further find indications that urea increases the entropy of the globular state.


Assuntos
Resinas Acrílicas/química , Ureia/química , Entropia , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Solubilidade , Água/química
12.
J Phys Chem B ; 118(26): 7327-34, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24927256

RESUMO

Protective osmolytes are chemical compounds that shift the protein folding/unfolding equilibrium toward the folded state under osmotic stresses. The most widely considered protection mechanism assumes that osmolytes are depleted from the protein's first solvation shell, leading to entropic stabilization of the folded state. However, recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. On the basis of molecular dynamics simulations of this specific system, we propose a new microscopic mechanism that explains how direct osmolyte-macromolecule interactions confer stability to folded states. We show that urea molecules preferentially accumulate in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces with the hydrophobic isopropyl groups, leading to the formation of low entropy urea clouds. These clouds provide an entropic driving force for folding, resulting in preferential urea binding to the folded state and a decrease of the lower folding temperature in agreement with experiment. The simulations further indicate that thermodynamic nonideality of the bulk solvent opposes this driving force and may lead to denaturation, as illustrated by simulations of PNiPAM in aqueous solutions with dimethylurea. The proposed mechanism provides a new angle on relations between the properties of protecting and denaturing osmolytes, salting-in or salting-out effects, and solvent nonidealities.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Entropia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Concentração Osmolar , Eletricidade Estática , Temperatura de Transição , Ureia/química , Água/química
20.
Biomed Res Int ; 2013: 329087, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936792

RESUMO

An EGFP construct interacting with the PIB1000-PEG6000-PIB1000 vesicles surface reported a ~2-fold fluorescence emission enhancement. Because of the constructs nature with the amphiphilic peptide inserted into the PIB core, EGFP is expected to experience a "pure" PEG environment. To unravel this phenomenon PEG/water solutions at different molecular weights and concentrations were used. Already at ~1:10 protein/PEG molar ratio the increase in fluorescence emission is observed reaching a plateau correlating with the PEG molecular weight. Parallel experiments in presence of glycerol aqueous solutions did show a slight fluorescence enhancement however starting at much higher concentrations. Molecular dynamics simulations of EGFP in neat water, glycerol, and PEG aqueous solutions were performed showing that PEG molecules tend to "wrap" the protein creating a microenvironment where the local PEG concentration is higher compared to its bulk concentration. Because the fluorescent emission can be perturbed by the refractive index surrounding the protein, the clustering of PEG molecules induces an enhanced fluorescence emission already at extremely low concentrations. These findings can be important when related to the use of EGFP as reported in molecular biology experiments.


Assuntos
Proteínas de Fluorescência Verde/química , Polietilenoglicóis/química , Água/química , Animais , Cristalografia por Raios X , Fluorescência , Peso Molecular , Peptídeos/química , Polímeros/química , Cifozoários/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...