Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475065

RESUMO

Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.

2.
Lab Chip ; 24(2): 327-338, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38088259

RESUMO

We report a continuous microreactor platform achieving sub-millisecond homogeneous reagent mixing (∼300 µs) for a time-resolved study on the synthesis of ultra-small gold nanoparticles (NPs). The microreactor (coupled with small angle X-ray scattering, UV-vis, and X-ray absorption spectroscopy for in situ and in operando characterizations), operates within mixing time frames below system characteristic times, providing a unique opportunity to deepen the comprehension of reaction and phase transition pathways with unprecedented details. The microreactor channel length can be approximated to a given reaction time when operated in continuous mode and steady state. As a result, the system can be statically investigated, eliminating technique-dependent probing time constraints and local inhomogeneities caused by mixing issues. We have studied Au(0) NP formation kinetics from Au(III) precursors complexed with oleylamine in organic media, using triisopropylsilane as a reducing agent. The existence of Au(III)/Au(I) prenucleation clusters and the formation of a transient Au(I) lamellar phase under certain conditions, before the onset of Au(0) formation, have been observed. Taking advantage of the high frequency time-resolved information, we propose and model two different reaction pathways associated with the presence or absence of the Au(I) lamellar phase. In both cases, non-classical pathways leading to the formation of NPs are discussed.

3.
Opt Express ; 30(2): 2981-2990, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209427

RESUMO

The analysis of nano- and microparticle suspensions with micro systems affords improved space-time yields, selectivity, reaction residence times and conversions capabilities. These capabilities are of primary importance in various fields of research and industry. The few microfluidic lab-on-a-chip approaches that have been developed are essentially designed to analyse fluid phases or involve the use of benchtop particle sizing instruments. We report a novel microscale approach to characterize the particle size distribution and absolute concentration of colloidal suspensions. The method is based on a photonic lab-on-a-chip with three scale-specific detection channels to record simultaneous light extinction spectra. Experiments carried out on particle standards with sizes ranging from 30 nm to 0.5 µm and volume concentrations of 1 to 1000ppm, clearly demonstrate the value and potential of the proposed method.

4.
Appl Spectrosc ; 76(5): 580-589, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35108115

RESUMO

The study and development of present and future processes for the treatment/recycling of spent nuclear fuels require many steps, from design in the laboratory to setting up on an industrial scale. In all of these steps, analysis and instrumentation are key points. For scientific reasons (small-scale studies, control of phenomena, etc.) but also with regard to minimizing costs, risks, and waste, such developments are increasingly carried out on milli- or microfluidic devices. The logic is the same for the chemical analyses associated with their follow-up and interpretation. Due to this, over the last few years, opto-microfluidic analysis devices adapted to the monitoring of different processes (dissolution, liquid-liquid extraction, precipitation, etc.) have been increasingly designed and developed. In this work, we prove that photonic lab-on-a-chip (PhLoC) technology is fully suitable for all actinides concentration monitoring along the plutonium uranium refining extraction (plutonium, uranium, reduction, extraction, or Purex) process. Several PhLoC microfluidic platforms were specifically designed and used in different nuclear research and development (R&D) laboratories, to tackle actinides analysis in multiple oxidation states even in mixtures. The detection limits reached (tens of µmol·L-1) are fully compliant with on-line process monitoring, whereas a range of analyzable concentrations of three orders of magnitude can be covered with less than 150 µL of analyte. Finally, this work confirms the possibility and the potential of coupling Raman and ultraviolet-visible (UV-Vis) spectroscopies at the microfluidic scale, opening the perspective of measuring very complex mixtures.


Assuntos
Elementos da Série Actinoide , Plutônio , Urânio , Elementos da Série Actinoide/análise , Dispositivos Lab-On-A-Chip , Microfluídica , Plutônio/análise , Urânio/análise
5.
Biosensors (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34821675

RESUMO

The equation of state of colloids plays an important role in the modelling and comprehension of industrial processes, defining the working conditions of processes such as drying, filtration, and mixing. The determination of the equation is based on the solvent equilibration, by dialysis, between the colloidal suspension and a reservoir with a known osmotic pressure. In this paper, we propose a novel microfluidic approach to determine the equation of state of a lysozyme solution. Monodispersed droplets of lysozyme were generated in the bulk of a continuous 1-decanol phase using a flow-focusing microfluidic geometry. In this multiphasic system and in the working operation conditions, the droplets can be considered to act as a permeable membrane system. A water mass transfer flow occurs by molecule continuous diffusion in the surrounding 1-decanol phase until a thermodynamic equilibrium is reached in a few seconds to minutes, in contrast with the standard osmotic pressure measurements. By changing the water saturation of the continuous phase, the equation of state of lysozyme in solution was determined through the relation of the osmotic pressure between protein molecules and the volume fraction of protein inside the droplets. The obtained equation shows good agreement with other standard approaches reported in the literature.


Assuntos
Microfluídica , Muramidase , Coloides , Desidratação , Água
6.
Acta Crystallogr D Struct Biol ; 76(Pt 8): 751-758, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32744257

RESUMO

Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Manejo de Espécimes/métodos , Coleta de Dados , Análise em Microsséries , Conformação Proteica , Temperatura
7.
Nanoscale ; 12(30): 16173-16188, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32701100

RESUMO

The syntheses of metal nanoparticles by reduction in apolar solvents in the presence of long chain surfactants have proven to be extremely effective in the control of the particle size and shape. Nevertheless, the elucidation of the nucleation/growth mechanism is not straightforward because of the multiple roles played by surfactants. The nucleation stage, in particular, is very difficult to describe precisely and requires in situ and time-resolved techniques. Here, relying on in situ small angle X-ray scattering (SAXS), X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HE-XRD), we propose that ultra-small gold particles prepared by reduction of gold chloride in a solution of oleylamine (OY) in hexane with triisopropylsilane do not follow a classical nucleation process but result from pre-nucleation clusters (PNCs). These PNCs contain Au(iii) and Au(i) precursors; they are almost stable in size during the induction stage, as shown by SAXS, prior to undergoing a very fast shrinkage during the nucleation stage. The gold speciation as a function of time deduced from the XAS spectra has been analyzed through multi-step reaction pathways comprising both highly reactive species, involved in the nucleation and growth stages, and poorly reactive species acting as a reservoir for the reactive species. The duration of the induction period is related to the reactivity of the gold precursors, which is tuned by the coordination of OY to the gold complexes, while the nucleation stage was found to depend on the size and reactivity of the PNCs. The role of the PNCs in determining the final particle size and structure is also discussed in relation to previous studies. The multiple roles of OY, as the solubilizing agent of the gold salt, the ligand of the gold complexes determining both the size of the PNCs and the reactivity of the gold precursors, and finally the capping agent of the final gold particles as oleylammonium chloride, have been clearly established. This work opens new perspectives to synthesize metal NPs via metal-organic PNCs and to define new synthesis routes for nanoparticles that may present structure and morphologies different from those obtained by the classical nucleation routes.

8.
Anal Chem ; 90(4): 2456-2460, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29327582

RESUMO

The reduction of effluents deriving from analytical control is a serious concern in the nuclear industry, for both production and R&D units. In this work we report an alternative methodology for the standard UV-vis absorbance analyses for actinides concentration monitoring along the plutonium uranium refining extraction (PUREX) process. This methodology, based on photonic lab-on-a-chip (PhLoC) technology, enables drastic sampling reduction down to a few microliters and simultaneously allows to track concentrations over several orders of magnitude while maintaining a detection linearity range. A PhLoC microfluidic platform was specifically designed to allow online sample injection with zero dead volume connectivity and the on-chip spectrophotometric approach, based on a multiple optical path configuration, was tested for the determination of uranium(VI) concentrations from 0.1 to 200 g L-1, showing that linearity is maintained within high levels of confidence. These results provide the proof of concept for the transposition of current analytical methods for actinides, including plutonium, to microfluidic systems.

9.
Sensors (Basel) ; 17(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574461

RESUMO

The relevance of coupling droplet-based Photonic Lab-on-a-Chip (PhLoC) platforms and Small-Angle X-Ray Scattering (SAXS) technique is here highlighted for the performance of high throughput investigations, related to the study of protein macromolecular interactions. With this configuration, minute amounts of sample are required to obtain reliable statistical data. The PhLoC platforms presented in this work are designed to allow and control an effective mixing of precise amounts of proteins, crystallization reagents and buffer in nanoliter volumes, and the subsequent generation of nanodroplets by means of a two-phase flow. Spectrophotometric sensing permits a fine control on droplet generation frequency and stability as well as on concentration conditions, and finally the droplet flow is synchronized to perform synchrotron radiation SAXS measurements in individual droplets (each one acting as an isolated microreactor) to probe protein interactions. With this configuration, droplet physic-chemical conditions can be reproducibly and finely tuned, and monitored without cross-contamination, allowing for the screening of a substantial number of saturation conditions with a small amount of biological material. The setup was tested and validated using lysozyme as a model of study. By means of SAXS experiments, the proteins gyration radius and structure envelope were calculated as a function of protein concentration. The obtained values were found to be in good agreement with previously reported data, but with a dramatic reduction of sample volume requirements compared to studies reported in the literature.

10.
Talanta ; 170: 180-184, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501156

RESUMO

A low cost fabrication process for photonic lab on a chip systems is here proposed. For the implementation of the masters suitable for cast molding fabrication, an inexpensive dry film photoresist, patternable using standard laboratory equipment, is benchmarked against standardized SU-8 masters obtained using UV lithography and systems manufacture in clean room facilities. Results show adequate system fabrication and a comparable performance of the photonic structures for absorbance/extinction measurements.

11.
Anal Chem ; 88(23): 11919-11923, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27783896

RESUMO

Microfluidics or lab-on-a-chip technology offer clear advantages over conventional systems such as a dramatic reduction of reagent consumption or a shorter analysis time, which are translated into cost-effective systems. In this work, we present a photonic enzymatic lab-on-a-chip reactor based on cross-linked enzyme crystals (CLECs), able to work in continuous flow, as a highly sensitive, robust, reusable, and stable platform for continuous sensing with superior performance as compared to the state of the art. The microreactor is designed to facilitate the in situ crystallization and crystal cross-linking generating enzymatically active material that can be stored for months/years. Thus, and by means of monolithically integrated micro-optics elements, continuous enzymatic reactions can be spectrophotometrically monitored. Lipase, an enzyme with industrial significance for catalyzed transesterification, hydrolysis, and esterification reactions, is used to demonstrate the potential of the microplatforms as both a continuous biosensor and a microreactor for the synthesis of high value compounds.


Assuntos
Técnicas Biossensoriais , Reagentes de Ligações Cruzadas/química , Dispositivos Lab-On-A-Chip , Lipase/química , Fótons , Reagentes de Ligações Cruzadas/metabolismo , Cristalização , Lipase/metabolismo
12.
Anal Chem ; 88(13): 6630-7, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27152895

RESUMO

The integration of micro-optical elements with microfluidics leads to the highly promising photonic lab-on-a-chip analytical systems (PhLoCs). In this work, we re-examine the main principles which are underneath the on-chip spectrophotometric detection, approaching the PhLoC concept to a nonexpert audience.

13.
Lab Chip ; 15(20): 4083-9, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26334474

RESUMO

A microfluidic chip for cross-linked enzyme crystals (McCLEC) is presented and demonstrated to be a stable, reusable and robust biocatalyst-based device with very promising biotechnological applications. The cost-effective microfluidic platform allows in situ crystallization, cross-linking and enzymatic reaction assays on a single device. A large number of enzymatic reuses of the McCLEC platform were achieved and a comparative analysis is shown illustrating the efficiency of the process and its storage stability for more than one year.


Assuntos
Ensaios Enzimáticos/instrumentação , Dispositivos Lab-On-A-Chip , Amidoidrolases/química , Amidoidrolases/metabolismo , Animais , Bacillus cereus/enzimologia , Biocatálise , Estabilidade Enzimática , Muramidase/química , Muramidase/metabolismo
14.
Lab Chip ; 15(4): 1133-9, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537135

RESUMO

We propose a PDMS-based photonic system for the accurate measurement of protein concentration with minute amounts of the sample. As opposed to the state of the art approach, in the multiple path photonic lab on a chip (MPHIL), analyte concentration or molar absorptivity is obtained with a single injection step, by performing simultaneous parallel optical measurements varying the optical path length. Also, as opposed to the standard calibration protocol, the MPHIL approach does not require a series of measurements at different concentrations. MPHIL has three main advantages: firstly the possibility of dynamically selecting the path length, always working in the absorbance vs. concentration linear range for each target analyte. Secondly, a dramatic reduction of the total volume of the sample required to obtain statistically reliable results. Thirdly, since only one injection is required, the measurement time is minimized, reducing both contamination and signal drifts. These characteristics are clearly advantageous when compared to commercial micro-spectrophotometers. The MPHIL concept was validated by testing three commercial proteins, lysozyme (HEWL), glucose isomerase (d-xylose-ketol-isomerase, GI) and Aspergillus sp. lipase L (BLL), as well as two proteins expressed and purified for this study, B. cereus formamidase (FASE) and dihydropyrimidinase from S. meliloti CECT41 (DHP). The use of MPHIL is also proposed for any spectrophotometric measurement in the UV-VIS range, as well as for its integration as a concentration measurement platform in more advanced photonic lab on a chip systems.


Assuntos
Aldose-Cetose Isomerases/análise , Amidoidrolases/análise , Dispositivos Lab-On-A-Chip , Lipase/análise , Muramidase/análise , Fótons , Aldose-Cetose Isomerases/metabolismo , Amidoidrolases/metabolismo , Aspergillus/enzimologia , Bacillus cereus/enzimologia , Dimetilpolisiloxanos/química , Lipase/metabolismo , Muramidase/metabolismo , Sinorhizobium meliloti/enzimologia
15.
Langmuir ; 29(41): 12628-32, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24070240

RESUMO

We monitor the dissolution of arrayed picoliter-size sessile microdroplets of the aqueous phase in oil, generated using a recently developed fluidic device. Initial pinning of the microdroplet perimeter leads to a nearly constant contact diameter, thus contraction proceeds via microdroplet (micrometer-diameter) height and contact angle reductions. This confirms that picoliter microdroplets contraction or dissolution due to the selective diffusion of water in oil has comparable dynamics with microliter droplet evaporation in air. We observe a constant microdroplet dissolution rate in different aqueous solutions. The application of this simple model to solvent-diffusion-driven crystallization experiments in confined volumes, for instance, would allow us to determine precisely the concentration in the microdroplet during an experiment and particularly at nucleation.


Assuntos
Óleos/química , Termodinâmica , Cloreto de Cálcio/química , Carbonatos/química , Difusão , Tamanho da Partícula , Cloreto de Sódio/química , Soluções , Propriedades de Superfície , Água/química
16.
Anal Chem ; 85(20): 9678-85, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24040900

RESUMO

The use of SU-8-based optofluidic systems (OFS) is validated as an affordable and easy alternative to expensive glass device manufacturing for small-molecule crystallization studies and, in comparison with other polymers, able to withstand most organic solvents. A comparison between two identical OFS (using SU-8 and poly(dimethylsiloxane), PDMS) against the 36 most commonly used organic solvents for small-molecule crystallization studies have confirmed both the structural and optical stability of the SU-8, whereas PDMS suffered from unsealing or tearing in most cases. In order to test its compatibility, measurements before and after 24 h of continued exposure against solvents have been pursued. Here, three aspects have been considered: in the macroscale, swelling has been determined by analyzing the variations in the optical path in the OFS. For determining compatibility at microscale, fabricated SU-8 micropatterns were solvent-etched and subsequently characterized by scanning electron microscopy (SEM). Roughness of the polymer has also been studied through atomic force microscopy (AFM) measurements at the nanoscale. Experimental measurements of PDMS swelling were in accordance with previously reported observations, while SU-8 displayed a great stability against all the tested solvents. Through this experimental procedure we also show that the OFS are suitable for real-time, on-chip, UV-vis spectroscopy. Micro- and nanoscale observations did not show apparent corrosion on SU-8 surface. Also, two commonly used carrier fluids for microdroplet generation (FC-70 Fluorinert oil and silicone oil) were also tested against the different solvents with the aim of providing useful information for later microbatch experiments.

17.
Langmuir ; 29(26): 8213-21, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23735159

RESUMO

In this work, the efficiency of bioinspired citrate-functionalized nanocrystalline apatites as nanocarriers for delivery of doxorubicin (DOXO) has been assessed. The nanoparticles were synthesized by thermal decomplexing of metastable calcium/citrate/phosphate solutions both in the absence (Ap) and in the presence (cAp) of carbonate ions. The presence of citrate and carbonate ions in the solution allowed us to tailor the size, shape, carbonate content, and surface chemistry of the nanoparticles. The drug-loading efficiency of the two types of apatite was evaluated by means of the adsorption isotherms, which were found to fit a Langmuir-Freundlich behavior. A model describing the interaction between apatite surface and DOXO is proposed from adsorption isotherms and ζ-potential measurements. DOXO is adsorbed as a dimer by means of a positively charged amino group that electrostatically interacts with negatively charged surface groups of nanoparticles. The drug-release profiles were explored at pHs 7.4 and 5.0, mimicking the physiological pH in the blood circulation and the more acidic pH in the endosome-lysosome intracellular compartment, respectively. After 7 days at pH 7.4, cAp-DOXO released around 42% less drug than Ap-DOXO. However, at acidic pH, both nanoassemblies released similar amounts of DOXO. In vitro assays analyzed by confocal microscopy showed that both drug-loaded apatites were internalized within GTL-16 human carcinoma cells and could release DOXO, which accumulated in the nucleus in short times and exerted cytotoxic activity with the same efficiency. cAp are thus expected to be a more promising nanocarrier for experiments in vivo, in situations where intravenous injection of nanoparticles are required to reach the targeted tumor, after circulating in the bloodstream.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Apatitas/química , Citrato de Cálcio/química , Carbonatos/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Nanopartículas/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Eletricidade Estática , Termodinâmica
18.
J Inorg Biochem ; 127: 261-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23648093

RESUMO

In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2µm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.


Assuntos
Alumínio/química , Apatitas/química , Ácido Cítrico/química , Titânio/química , Vanádio/química , Implantes Dentários , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...