Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(1): 132-146, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450595

RESUMO

Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.


Assuntos
Comportamento Alimentar , Dispersão de Sementes , Animais , Simbiose , Aves , Frutas , Árvores
2.
Sci Total Environ ; 810: 151338, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748832

RESUMO

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.


Assuntos
Mudança Climática , Florestas , Ecossistema , Microclima , Temperatura
3.
Free Radic Biol Med ; 167: 141-180, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33677064

RESUMO

Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.


Assuntos
Doenças Mitocondriais , Ubiquinona , Ataxia , Estudos de Associação Genética , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Debilidade Muscular , Ubiquinona/deficiência
4.
Nat Ecol Evol ; 3(5): 744-749, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936433

RESUMO

Macroclimate warming is often assumed to occur within forests despite the potential for tree cover to modify microclimates. Here, using paired measurements, we compared the temperatures under the canopy versus in the open at 98 sites across 5 continents. We show that forests function as a thermal insulator, cooling the understory when ambient temperatures are hot and warming the understory when ambient temperatures are cold. The understory versus open temperature offset is magnified as temperatures become more extreme and is of greater magnitude than the warming of land temperatures over the past century. Tree canopies may thus reduce the severity of warming impacts on forest biodiversity and functioning.


Assuntos
Florestas , Microclima , Temperatura , Mudança Climática
5.
Trends Ecol Evol ; 34(3): 260-273, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30497791

RESUMO

Ecological niches reflect not only adaptation to local circumstances but also the tendency of related lineages to share environmental tolerances. As a result, information on phylogenetic relationships has underappreciated potential to inform ecological niche modeling. Here we review three strategies for incorporating evolutionary information into niche models: splitting lineages into subunits, lumping across lineages, and partial pooling of lineages into a common statistical framework that implicitly or explicitly accounts for evolutionary relationships. We challenge the default practice of modeling at the species level, which ignores the process of niche evolution and erroneously assumes that the species is always the appropriate level for niche estimation. Progress in the field requires reexamination of how we assess models of niches versus models of distributions.


Assuntos
Ecossistema , Especiação Genética , Modelos Biológicos , Filogenia , Distribuição Animal , Evolução Biológica , Dispersão Vegetal
6.
Trends Ecol Evol ; 33(10): 765-776, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30173951

RESUMO

How individual species and entire ecosystems will respond to future climate change are among the most pressing questions facing ecologists. Past biodiversity dynamics recorded in the paleoecological archives show a broad array of responses, yet significant knowledge gaps remain. In particular, the relative roles of evolutionary adaptation, phenotypic plasticity, and dispersal in promoting survival during times of climate change have yet to be clarified. Investigating the paleo-archives offers great opportunities to understand biodiversity responses to future climate change. In this review we discuss the mechanisms by which biodiversity responds to environmental change, and identify gaps of knowledge on the role of range shifts and tolerance. We also outline approaches at the intersection of paleoecology, genomics, experiments, and predictive models that will elucidate the processes by which species have survived past climatic changes and enhance predictions of future changes in biological diversity.


Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Adaptação Fisiológica , Dinâmica Populacional
7.
Am J Bot ; 104(11): 1765-1774, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29167159

RESUMO

PREMISE OF THE STUDY: Bipolar species represent the greatest biogeographical disjunction on Earth, raising many questions about the colonization and adaptive processes behind such striking distribution. We investigated climatic niche differences of five Carex bipolar species in North and South America to assess niche shifts between these two regions. Moreover, we assessed potential distribution changes with future climate change. METHODS: We used 1202 presence data points from herbarium specimens and 19 bioclimatic variables to assess climatic niche differences and potential distributions among the five species using ordination methods and Maxent. KEY RESULTS: The niche overlap analyses showed low levels of niche filling and high climatic niche expansion between North and South America. Carex macloviana and C. maritima showed the greatest niche expansion (60% and 96%, respectively), followed by C. magellanica (45%) and C. microglochin (39%). Only C. canescens did not colonize new environments (niche expansion = 0.2%). In contrast, all species but C. magellanica had niche filling that was <40%; hence, they are absent in the south from many environments they inhabit in North America. Climate change will push all species toward higher latitudes and elevation, reducing the availability of suitable environments. CONCLUSIONS: The colonization of South America seems to have involved frequent climatic niche shifts. Most species have colonized new environments from those occupied in the North. Observed niche shifts appear congruent with time since colonization and with current genetic structure within species. In these cold-dwelling species, climate change will most likely decrease their suitable environments in the future.


Assuntos
Carex (Planta)/fisiologia , Dispersão Vegetal , Carex (Planta)/genética , Mudança Climática , Ecossistema , Geografia , América do Norte , América do Sul
8.
Science ; 355(6323): 357-358, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28126779
9.
Nat Plants ; 1: 15110, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27250675

RESUMO

Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

10.
New Phytol ; 204(1): 37-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039238

RESUMO

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Assuntos
Fósseis , Modelos Teóricos , Filogeografia , Plantas , Clima , Fagus/fisiologia , Camada de Gelo , Picea/fisiologia , Pseudotsuga/fisiologia
12.
Proc Natl Acad Sci U S A ; 110(46): 18561-5, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24167287

RESUMO

Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.


Assuntos
Adaptação Biológica/fisiologia , Biota/fisiologia , Aquecimento Global , Microclima , Árvores/fisiologia , Europa (Continente) , América do Norte , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie , Temperatura
14.
Am J Bot ; 97(5): e26-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21622433

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed for the evergreen tree Laurus to investigate population genetic structure and patterns of gene flow via animal-dispersed pollen and seeds. METHODS AND RESULTS: Twenty polymorphic nuclear microsatellite markers were developed using CA, GA, AAC, and ATG n-enriched genomic libraries. Given the tetraploidy of the sampled populations, we analyzed our data both as dominant loci and as codominant genotypic data to calculate allele frequencies and genetic diversity. A total of 196 and 222 alleles were found in 37 Mediterranean (L. nobilis) and 26 Macaronesian islands (L. azorica) individuals, respectively. CONCLUSIONS: Levels of polymorphism of the reported markers are adequate for studies of diversity and parentage in natural populations of this Tertiary relict tree.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...