Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(31)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38670122

RESUMO

Monomer, dimer and trimer semiconductor superlattices are an alternative for bandgap engineering due to the possibility of duplicate, triplicate, and in general multiply the number of minibands and minigaps in a specific energy region. Here, we show that monomer, dimer, and trimer magnetic silicene superlattices (MSSLs) can be the basis for tunable magnetoresistive devices due to the multiplication of the peaks of the tunneling magnetoresistance (TMR). In addition, these structures can serve as spin-valleytronic devices due to the formation of two well-defined spin-valley polarization states by appropriately adjusting the superlattice structural parameters. We obtain these conclusions by studying the spin-valley polarization and TMR of monomer, dimer, and trimer MSSLs. The magnetic unit cell is structured with one seed A with positive magnetization, and one, two, or three seeds B with variable magnetization. The number of B seeds defines the monomer, dimer, and trimer superlattice, while its magnetic orientation positive or negative the parallel (PM) or antiparallel magnetization (AM) superlattice configuration. The transfer matrix method and the Landauer-Büttiker formalism are employed to obtain the transmission and transport properties, respectively. We find multiplication of TMR peaks in staircase fashion according to the number of B seeds in the superlattice unit cell. This multiplication is related to the multiplication of the minibands which reflects as multiplication of the descending envelopes of the conductance. We also find well-defined polarization states for both PM and AM by adjusting asymmetrically the width and height of the barrier-well in seeds A and B.

2.
J Phys Condens Matter ; 36(6)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903438

RESUMO

Gaussian and Gaussian-related structures are quite attractive due to its versatility to modulate the electronic transport, including its possibility as electron filters. Here, we show that these non-conventional profiles are not the exception when dealing with Fermi velocity barriers in monolayer graphene. In particular, we show that Gaussian Fermi velocity graphene barriers (G-FVGBs) and Gaussian-pulsed-like Fermi velocity graphene superlattices (GPL-FVGSLs) can serve as electron band-pass filters and oscillating conductance structures. We reach this conclusion by theoretically studying the transmission and transport properties of the mentioned structures. The study is based on the continuum model, the transfer matrix method and the Landauer-Büttiker formalism. We find nearly flat transmission bands or pass bands for G-FVGBs modulable through the system parameters. The pass bands improve as the maximum ratio of Fermi velocities (ξmax) increases, however its omnidirectional range is reduced. These characteristics result in a decaying conductance (integrated transmission) withξmax. The integrated transmission remains practically unaltered with the size of the system due to the saturation of the electron pass band filtering. In the case of GPL-FVGSLs the GPL profile results in regions of high transmission probability that can merge as flat transmission minibands if the pulse fraction and the superlattice parameters are appropriately tuned. The GPL profile also results in conductance (integrated transmission) oscillations that can be multiplied or reduced in number by adjusting the pulse fraction as well as the superlattice parameters.

3.
J Phys Condens Matter ; 35(39)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37336206

RESUMO

The transfer matrix method is considered to obtain the fundamental properties of 1D Dirac-like problems. The case of 1D problems in monolayer graphene is addressed. The main characteristics of the transfer matrix are analyzed, contrasting them with the ones corresponding to 1D Schrödinger-like problems. Analytic expressions for the transmission coefficient and bound states are obtained. The continuity between bound states and states of perfect transmission is demonstrated in general, and in particular showed for the case of single electrostatic barriers. These findings in principle can be extended to 2D materials with Hamiltonian similar to monolayer graphene such as silicene and transition metal dichalcogenides.

4.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972607

RESUMO

Periodic superlattices constitute ideal structures to modulate the transport properties of two-dimensional materials. In this paper, we show that the tunneling magnetoresistance (TMR) in phosphorene can be tuned effectively through periodic magnetic modulation. Deltaic magnetic barriers are arranged periodically along the phosphorene armchair direction in parallel (PM) and anti-parallel magnetization (AM) fashion. The theoretical treatment is based on a low-energy effective Hamiltonian, the transfer matrix method and the Landauer-Büttiker formalism. We find that the periodic modulation gives rise to oscillating transport characteristics for both PM and AM configurations. More importantly, by adjusting the electrostatic potential appropriately we find Fermi energy regions for which the AM conductance is reduced significantly while the PM conductance keeps considerable values, resulting in an effective TMR that increases with the magnetic field strength. These findings could be useful in the design of magnetoresistive devices based on magnetic phosphorene superlattices.

5.
J Phys Condens Matter ; 35(8)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36540932

RESUMO

Magnetic silicene superlattices (MSSLs) are versatile structures with spin-valley polarization and tunneling magnetoresistance (TMR) capabilities. However, the oscillating transport properties related to the superlattice periodicity impede stable spin-valley polarization states reachable by reversing the magnetization direction. Here, we show that aperiodicity can be used to improve the spin-valley polarization and TMR by reducing the characteristic conductance oscillations of periodic MSSLs (P-MSSLs). Using the Landauer-Büttiker formalism and the transfer matrix method, we investigate the spin-valley polarization and the TMR of Fibonacci (F-) and Thue-Morse (TM-) MSSLs as typical aperiodic superlattices. Our findings indicate that aperiodic superlattices with higher disorder provide better spin-valley polarization and TMR values. In particular, TM-MSSLs reduce considerably the conductance oscillations giving rise to two well-defined spin-valley polarization states and a better TMR than F- and P-MSSLs. F-MSSLs also improve the spin-valley polarization and TMR, however they depend strongly on the parity of the superlattice generation.

6.
J Phys Condens Matter ; 34(19)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158346

RESUMO

We study the electronic transport of armchair (AC) and zigzag (ZZ) gated phosphorene junctions. We find confined states for both direction-dependent phosphorene junctions. In the case of AC junctions confined states are reflected in the transmission properties as Fabry-Pérot resonances at normal and oblique incidence. In the case of ZZ junctions confined states are invisible at normal incidence, resulting in a null transmission. At oblique incidence Fabry-Pérot resonances are presented in the transmission as in the case of AC junctions. This invisibility or electronic cloaking is related to the highly direction-dependent pseudospin texture of the charge carriers in phosphorene. Electronic cloaking is also manifested as a series of singular peaks in the conductance and as inverted peaks in the Seebeck coefficient. The characteristics of electronic cloaking are also susceptible to the modulation of the phosphorene bandgap and an external magnetic field. So, electronic cloaking in phosphorene junctions in principle could be tested through transport, thermoelectric or magnetotransport measurements.

7.
Sci Rep ; 12(1): 832, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039554

RESUMO

The transmission and transport properties of biperiodic graphene superlattices are studied theoretically. Special attention is paid to the so-called transparent states of biperiodic superlattices. A Dirac-like Hamiltonian is used to describe the charge carriers in graphene. The transfer matrix method and the Landauer-Büttiker formalism are implemented to obtain the transmittance and conductance, respectively. Similar results to those reported for Schrödinger electrons are obtained. However, in the case of Dirac electrons the splitted bands and the transparent states associated to the biperiodicity depend strongly on the angle of incidence as well as the character of the charge carriers. In fact, the dynamic of the splitted bands and transparent states is inverted for holes. The origin of transparent states is unveiled by obtaining an analytic expression for the transmittance. It is found that resonant transmission through single and double barriers gives rise to transparent states. Regarding the transport properties, it is possible to identify the fundamental changes caused by the biperiodicity. In particular, it is found a splitting, shifting, and diminishment of the conductance peaks with respect to the case of regular periodicity. This opens the door to corroborate experimentally the fundamental characteristics of biperiodic gated graphene superlattices through transport measurements.

8.
Sci Rep ; 11(1): 13872, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230518

RESUMO

Fano resonances of bilayer graphene could be attractive for thermoelectric devices. The special profile presented by such resonances could significantly enhance the thermoelectric properties. In this work, we study the thermoelectric properties of bilayer graphene single and double barrier structures. The barrier structures are typically supported by a substrate and encapsulated by protecting layers, reducing considerably the phonon thermal transport. So, we will focus on the electronic contribution to the thermal transport. The charge carriers are described as massive chiral particles through an effective Dirac-like Hamiltonian. The Hybrid matrix method and the Landauer-Büttiker formalism are implemented to obtain the transmission, transport and thermoelectric properties. The temperature dependence of the Seebeck coefficient, the power factor, the figure of merit and the efficiency is analyzed for gapless single and double barriers. We find that the charge neutrality point and the system resonances shape the thermoelectric response. In the case of single barriers, the low-temperature thermoelectric response is dominated by the charge neutrality point, while the high-temperature response is determined by the Fano resonances. In the case of double barriers, Breit-Wigner resonances dominate the thermoelectric properties at low temperatures, while Fano and hybrid resonances become preponderant as the temperature rises. The values for the figure of merit are close to two for single barriers and above three for double barriers. The system resonances also allows us to optimize the output power and the efficiency at low and high temperatures. By computing the density of states, we also corroborate that the improvement of the thermoelectric properties is related to the accumulation of electron states. Our findings indicate that bilayer graphene barrier structures can be used to improve the response of thermoelectric devices.

9.
Sci Rep ; 10(1): 14679, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895460

RESUMO

2D materials open the possibility to study Dirac electrons in complex self-similar geometries. The two-dimensional nature of materials like graphene, silicene, phosphorene and transition-metal dichalcogenides allow the nanostructuration of complex geometries through metallic electrodes, interacting substrates, strain, etc. So far, the only 2D material that presents physical properties that directly reflect the characteristics of the complex geometries is monolayer graphene. In the present work, we show that silicene nanostructured in complex fashion also displays self-similar characteristics in physical properties. In particular, we find self-similar patterns in the conductance, spin polarization and thermoelectricity of Cantor-like silicene structures. These complex structures are generated by modulating electrostatically the silicene local bandgap in Cantor-like fashion along the structure. The charge carriers are described quantum relativistically by means of a Dirac-like Hamiltonian. The transfer matrix method, the Landauer-Büttiker formalism and the Cutler-Mott formula are used to obtain the transmission, transport and thermoelectric properties. We numerically derive scaling rules that connect appropriately the self-similar conductance, spin polarization and Seebeck coefficient patterns. The scaling rules are related to the structural parameters that define the Cantor-like structure such as the generation and length of the system as well as the height of the potential barriers. As far as we know this is the first time that a 2D material beyond monolayer graphene shows self-similar quantum transport as well as that transport related properties like spin polarization and thermoelectricity manifest self-similarity.

10.
Sci Rep ; 9(1): 8759, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217466

RESUMO

Electron transmission through different non-conventional (non-uniform barrier height) gated and gapped graphene superlattices (GSLs) is studied. Linear, Gaussian, Lorentzian and Pöschl-Teller superlattice potential profiles have been assessed. A relativistic description of electrons in graphene as well as the transfer matrix method have been used to obtain the transmission properties. We find that it is not possible to have perfect or nearly perfect pass bands in gated GSLs. Regardless of the potential profile and the number of barriers there are remanent oscillations in the transmission bands. On the contrary, nearly perfect pass bands are obtained for gapped GSLs. The Gaussian profile is the best option when the number of barriers is reduced, and there is practically no difference among the profiles for large number of barriers. We also find that both gated and gapped GSLs can work as omnidirectional band-pass filters. In the case of gated Gaussian GSLs the omnidirectional range goes from -50° to 50° with an energy bandwidth of 55 meV, while for gapped Gaussian GSLs the range goes from -80° to 80° with a bandwidth of 40 meV. Here, it is important that the energy range does not include remanent oscillations. On the light of these results, the hole states inside the barriers of gated GSLs are not beneficial for band-pass filtering. So, the flatness of the pass bands is determined by the superlattice potential profile and the chiral nature of the charge carriers in graphene. Moreover, the width and the number of electron pass bands can be modulated through the superlattice structural parameters. We consider that our findings can be useful to design electron filters based on non-conventional GSLs.

11.
Sci Rep ; 7(1): 16708, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196690

RESUMO

In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing the number of periods, adjusting the barriers height as well as modifying the barriers and wells width it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and identifiable changes in the conductance. Moreover, by reducing the angular range for the computation of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these conductance features could serve as unequivocal characteristic of the existence of Fano resonances in bilayer graphene.

12.
Sci Rep ; 7(1): 617, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377588

RESUMO

Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once the graphene sheet is subjected to Cantor-like nanostructuring. As far as we know the mentioned system is one of the few in which a self-similar structure produces self-similar patterns on a physical property. These patterns are analysed quantitatively, by obtaining the scaling rules that underlie them. It is worth noting that the transport properties are an average of the dispersion channels, which makes the existence of scale factors quite surprising. In addition, that self-similarity be manifested in the conductance opens an excellent opportunity to test this fundamental property experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...