Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancers (Basel) ; 15(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686667

RESUMO

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, but chronological age does not accurately discriminate frailty status at the inter-individual level. Frailty describes a person's overall resilience. Since CLL is a stressful situation, it is relevant to assess the patient´s degree of frailty, especially before starting antineoplastic treatment. We are in the era of targeted therapies, which have helped to control the disease more effectively and avoid the toxicity of chemo (immuno) therapy. However, these drugs are not free of side effects and other aspects arise that should not be neglected, such as interactions, previous comorbidities, or adherence to treatment, since most of these medications are taken continuously. The challenge we face is to balance the risk of toxicity and efficacy in a personalized way and without forgetting that the most frequent cause of death in CLL is related to the disease. For this purpose, comprehensive geriatric assessment (GA) provides us with the opportunity to evaluate multiple domains that may affect tolerance to treatment and that could be improved with appropriate interventions. In this review, we will analyze the state of the art of GA in CLL through the five Ws.

3.
Leukemia ; 37(2): 339-347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566271

RESUMO

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico , Fator 88 de Diferenciação Mieloide/genética , Mutação , Fenótipo
4.
Value Health ; 25(10): 1760-1767, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595634

RESUMO

OBJECTIVES: The Innovative Medicines Initiative-funded, multistakeholders project Healthcare Alliance for Resourceful Medicine Offensive Against Neoplasms in Hematology (HARMONY) created a task force involving patient organizations, medical associations, pharmaceutical companies, and health technology assessment/regulator agencies' representatives to evaluate the suitability of previously established value frameworks (VFs) for assessing the clinical and societal impact of new interventions for hematologic malignancies (HMs). METHODS: Since the HARMONY stakeholders identified the inclusion of patients' points of view on evaluating VFs as a priority, surveys were conducted with the patient organizations active in HMs and part of the HARMONY network, together with key opinion leaders, pharmaceutical companies, and regulators, to establish which outcomes were important for each HM. Next, to evaluate VFs against the sources of information taken into account (randomized clinical trials, registries, real-world data), structured questionnaires were created and filled by HARMONY health professionals to specify preferred data sources per malignancy. Finally, a framework evaluation module was built to analyze existing clinical VFs (American Society of Clinical Oncology, European Society of Medical Oncology, Magnitude of Clinical Benefit Scale, Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen, Institute for Clinical and Economic Review, National Comprehensive Cancer Network Evidence Blocks, and patient-perspective VF). RESULTS: The comparative analysis describes challenges and opportunities for the use of each framework in the context of HMs and drafts possible lines of action for creating or integrating a more specific, patient-focused clinical VF for HMs. CONCLUSIONS: None of the frameworks meets the HARMONY goals for a tool that applies to HMs and assesses in a transparent, reproducible, and systematic way the therapeutic value of innovative health technologies versus available alternatives, taking a patient-centered approach and using real-world evidence.


Assuntos
Neoplasias Hematológicas , Hematologia , Neoplasias , Recursos em Saúde , Neoplasias Hematológicas/terapia , Humanos , Neoplasias/terapia , Preparações Farmacêuticas
5.
Diagnostics (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068813

RESUMO

The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.

6.
Haematologica ; 106(1): 87-97, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31974198

RESUMO

Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.


Assuntos
Leucemia Linfocítica Crônica de Células B , Aberrações Cromossômicas , Genoma Humano , Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Estudos Retrospectivos
7.
Int J Cancer ; 147(10): 2780-2792, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32720348

RESUMO

Chromosome 14q32 rearrangements/translocations involving the immunoglobulin heavy chain (IGH) are rarely detected in chronic lymphocytic leukemia (CLL). The prognostic significance of the IGH translocation is controversial and its mutational profile remains unknown. Here, we present for the first time a comprehensive next-generation sequencing (NGS) analysis of 46 CLL patients with IGH rearrangement (IGHR-CLLs) and we demonstrate that IGHR-CLLs have a distinct mutational profile with recurrent mutations in NOTCH1, IGLL5, POT1, BCL2, FBXW7, ZMYM3, MGA, BRAF and HIST1H1E genes. Interestingly, BCL2 and FBXW7 mutations were significantly associated with this subgroup and almost half of BCL2, IGLL5 and HISTH1E mutations reported were previously identified in non-Hodgkin lymphomas. Notably, IGH/BCL2 rearrangements were associated with a lower mutation frequency and carried BCL2 and IGLL5 mutations, while the other IGHR-CLLs had mutations in genes related to poor prognosis (NOTCH1, SF3B1 and TP53) and shorter time to first treatment (TFT). Moreover, IGHR-CLLs patients showed a shorter TFT than CLL patients carrying 13q-, normal fluorescence in situ hybridization (FISH) and +12 CLL, being this prognosis particularly poor when NOTCH1, SF3B1, TP53, BIRC3 and BRAF were also mutated. The presence of these mutations not only was an independent risk factor within IGHR-CLLs, but also refined the prognosis of low-risk cytogenetic patients (13q-/normal FISH). Hence, our study demonstrates that IGHR-CLLs have a distinct mutational profile from the majority of CLLs and highlights the relevance of incorporating NGS and the status of IGH by FISH analysis to refine the risk-stratification CLL model.


Assuntos
Redes Reguladoras de Genes , Cadeias Pesadas de Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 14/genética , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sequência de DNA
8.
Leukemia ; 34(6): 1599-1612, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974435

RESUMO

The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutagênese Sítio-Dirigida/métodos , Adenina/análogos & derivados , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 11/genética , Sinergismo Farmacológico , Humanos , Camundongos , Mutação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piperidinas , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Drug Metab Pers Ther ; 33(4): 159-163, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30391933

RESUMO

Research and innovation in personalized medicine (PM) are extensive and expanding, with several pharmacogenetic/pharmacogenomic (PGx) testing options currently available for a wide range of health problems. However, PGx-guided therapy faces many barriers to full integration into clinical practice and acceptance by practitioner/patient: utilization and uptake by payers in real-world practice are being discussed, and the criteria to guide clinicians and policy makers in PGx test selection are not fully incorporated. This review focuses on the advances of pharmacogenomics to individualize treatments, the relationship between pharmacogenetics and pharmacometabolomics, the new paradigm of the Big Data, the needs and barriers facing PGx clinical application and the situation of PGx testing in health national services. It is based on lectures presented by speakers of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) Fourth Conference, held in Catania, October 4th, 2017.


Assuntos
Metabolômica , Farmacogenética , Medicina de Precisão , Pesquisa Biomédica , Testes Genéticos , Humanos , Medicina de Precisão/métodos , Medicina de Precisão/tendências
10.
Oncotarget ; 8(41): 71234-71248, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050359

RESUMO

The rapid progress in next-generation sequencing technologies has significantly contributed to our knowledge of the genetic events associated with the development, progression and treatment resistance of chronic lymphocytic leukemia patients. Together with the discovery of new driver mutations, next-generation sequencing has revealed an immense degree of both intra- and inter-tumor heterogeneity and enabled us to describe marked clonal evolution. Advances in immunogenetics may be implemented to detect minimal residual disease more sensitively and to track clonal B cell populations, their dynamics and molecular characteristics. The interpretation of these aspects is indispensable to thoroughly examine the genetic background of chronic lymphocytic leukemia. We review and discuss the recent results provided by the different next-generation sequencing techniques used in studying the chronic lymphocytic leukemia genome, as well as future perspectives in the methodologies and applications.

11.
J Hematol Oncol ; 10(1): 83, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399885

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) is a highly genetically heterogeneous disease. Although CLL has been traditionally considered as a mature B cell leukemia, few independent studies have shown that the genetic alterations may appear in CD34+ hematopoietic progenitors. However, the presence of both chromosomal aberrations and gene mutations in CD34+ cells from the same patients has not been explored. METHODS: Amplicon-based deep next-generation sequencing (NGS) studies were carried out in magnetically activated-cell-sorting separated CD19+ mature B lymphocytes and CD34+ hematopoietic progenitors (n = 56) to study the mutational status of TP53, NOTCH1, SF3B1, FBXW7, MYD88, and XPO1 genes. In addition, ultra-deep NGS was performed in a subset of seven patients to determine the presence of mutations in flow-sorted CD34+CD19- early hematopoietic progenitors. Fluorescence in situ hybridization (FISH) studies were performed in the CD34+ cells from nine patients of the cohort to examine the presence of cytogenetic abnormalities. RESULTS: NGS studies revealed a total of 28 mutations in 24 CLL patients. Interestingly, 15 of them also showed the same mutations in their corresponding whole population of CD34+ progenitors. The majority of NOTCH1 (7/9) and XPO1 (4/4) mutations presented a similar mutational burden in both cell fractions; by contrast, mutations of TP53 (2/2), FBXW7 (2/2), and SF3B1 (3/4) showed lower mutational allele frequencies, or even none, in the CD34+ cells compared with the CD19+ population. Ultra-deep NGS confirmed the presence of FBXW7, MYD88, NOTCH1, and XPO1 mutations in the subpopulation of CD34+CD19- early hematopoietic progenitors (6/7). Furthermore, FISH studies showed the presence of 11q and 13q deletions (2/2 and 3/5, respectively) in CD34+ progenitors but the absence of IGH cytogenetic alterations (0/2) in the CD34+ cells. Combining all the results from NGS and FISH, a model of the appearance and expansion of genetic alterations in CLL was derived, suggesting that most of the genetic events appear on the hematopoietic progenitors, although these mutations could induce the beginning of tumoral cell expansion at different stage of B cell differentiation. CONCLUSIONS: Our study showed the presence of both gene mutations and chromosomal abnormalities in early hematopoietic progenitor cells from CLL patients.


Assuntos
Aberrações Cromossômicas , Células-Tronco Hematopoéticas/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Antígenos CD19 , Antígenos CD34 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Leucemia Linfocítica Crônica de Células B/genética
12.
Leuk Res ; 46: 30-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27111859

RESUMO

Deletion 13q (13q-) is the most common cytogenetic aberration in chronic lymphocytic leukemia (CLL) and is associated with the most favorable prognosis as the sole cytogenetic abnormality. However, it is heterogeneous whereby CLL patients with higher percentages of 13q- cells (13q-H) have a more aggressive clinical course and a distinct gene expression profile. The microRNA (miRNA) expression profile of CLL gives additional biological and prognostic information, but its expression in 13q- CLL has not been examined in detail. The miRNA expression of clonal B cell lymphocytes (CD19+ cells) of 38 CLL patients and normal B cells of six healthy donors was analyzed. CLL patients with higher percentages of 13q- cells (≥80%) showed a different level of miRNA expression from patients with lower percentages (<80%). Interestingly, miR-143 was downregulated and miR-155 was overexpressed in 13q-H. This deregulation affected important validated target genes involved in apoptosis (BCL2, MDM2, TP53INP1) and proliferation (KRAS, PI3K-AKT signaling), that could lead to decreased apoptosis and increased proliferation in 13q-H patients. This study provides new evidence about the heterogeneity of the 13q deletion in CLL patients, showing that miRNA regulation could be involved in several significant pathways deregulated in CLL patients with a high number of losses in 13q.


Assuntos
Transtornos Cromossômicos/genética , Perfilação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Apoptose/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Proliferação de Células/genética , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Variação Genética , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Prognóstico
13.
Drug Metab Pers Ther ; 31(1): 25-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26863347

RESUMO

Pharmacogenetics and pharmacogenomics (PGx) are rapidly growing fields that aim to elucidate the genetic basis for the interindividual differences in drug response. PGx approaches have been applied to many anticancer drugs in an effort to identify relevant inherited or acquired genetic variations that may predict patient response to chemotherapy and targeted therapies. In this article, we discuss the advances in the field of cancer pharmacogenetics and pharmacogenomics, driven by the recent technological advances and new revolutionary massive sequencing technologies and their application to elucidate the genetic bases for interindividual drug response and the development of biomarkers able to personalize drug treatments. Specifically, we present recent progress in breast cancer molecular classifiers, cell-free circulating DNA as a prognostic and predictive biomarker in cancer, patient-derived tumor xenograft models, chronic lymphocytic leukemia genomic landscape, and current pharmacogenetic advances in colorectal cancer. This review is based on the lectures presented by the speakers of the symposium "Pharmacogenetics and Pharmacogenomics as Tools in Cancer Therapy" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society (SEFF), held in Madrid (Spain) on April 21, 2015.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Farmacogenética/métodos , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Humanos , Terapia de Alvo Molecular , Neoplasias/genética , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
BMC Cancer ; 15: 238, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25880332

RESUMO

BACKGROUND: MicroRNAs are known to inhibit gene expression by binding to the 3'UTR of the target transcript. Downregulation of miR-223 has been recently reported to have prognostic significance in CLL. However, there is no evidence of the pathogenetic mechanism of this miRNA in CLL patients. METHODS: By applying next-generation sequencing techniques we have detected a common polymorphism (rs2307842), in 24% of CLL patients, which disrupts the binding site for miR-223 in HSP90B1 3'UTR. We investigated whether miR-223 directly targets HSP90B1 through luciferase assays and ectopic expression of miR-223. Quantitative real-time polymerase chain reaction and western blot were used to determine HSP90B1 expression in CLL patients. The relationship between rs2307842 status, HSP90B1 expression and clinico-biological data were assessed. RESULTS: HSP90B1 is a direct target for miR-223 by interaction with the putative miR-223 binding site. The analysis in paired samples (CD19+ fraction cell and non-CD19+ fraction cell) showed that the presence of rs2307842 and IGHV unmutated genes determined HSP90B1 overexpression in B lymphocytes from CLL patients. These results were confirmed at the protein level by western blot. Of note, HSP90B1 overexpression was independently predictive of shorter time to the first therapy in CLL patients. By contrast, the presence of rs2307842 was not related to the outcome. CONCLUSIONS: HSP90B1 is a direct target gene of miR-223. Our results provide a plausible explanation of why CLL patients harboring miR-223 downregulation are associated with a poor outcome, pointing out HSP90B1 as a new pathogenic mechanism in CLL and a promising therapeutic target.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Glicoproteínas de Membrana/genética , MicroRNAs/genética , Análise de Sequência de DNA/métodos , Regiões 3' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico
15.
Cancer Genet ; 206(3): 49-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23531595

RESUMO

The clinical heterogeneity that characterizes chronic lymphocytic leukemia (CLL), with survival times ranging from months to decades, reflects its biological diversity. Our understanding of the biology of CLL has helped us identify several markers of prognostic significance, by which CLL can be differentiated into several distinct diseases. The presence of specific chromosomal abnormalities is a prognostic indicator of disease progression and survival. Conventional cytogenetic analyses have revealed chromosomal aberrations in 40-50% of patients, but the detection of abnormalities is limited by the low mitotic activity of CLL cells. Metaphase analysis has recently undergone a "revival" because the metaphase yield has been improved by stimulation of CLL cells with alternative methods. Fluorescence in situ hybridization identifies chromosomal changes in approximately 80% of patients with CLL, and comparative genomic hybridization using high-density arrays (i.e., array comparative genomic hybridization [aCGH]) enables high-resolution genome-wide scanning for detecting copy number alterations in a single hybridization. The mutational status of the immunoglobulin heavy chain variable (IGHV) genes identifies two subsets of CLL with different outcomes. Unfortunately, the determination of IGHV mutation status may not be practical in all laboratories, and for this reason characteristics that are correlated with IGHV mutation status are needed-zeta-chain associated (TCR) protein kinase 70 kDa (ZAP-70) being that most commonly used currently in routine clinical practice. Whole genome sequencing has offered new insights into the mutational status of the disease, highlighting the role of several genes previously unrelated to CLL. Of these, NOTCH1 and SF3B1 are the most frequently mutated genes that predict poor prognosis. MicroRNA alterations are also involved in the initiation and progression of CLL, and the expression levels of some microRNAs correlate with previously established prognostic markers such as IGHV mutation status or ZAP-70. In addition, both global and gene-specific aberrant DNA methylation have been observed in CLL. Aberrant methylation has been described for genes that are specifically deregulated in CLL, such as BCL2, TCL1, and ZAP-70. Expanding knowledge of aberrant methylation profiles in CLL has a potential future impact on diagnosis, prognosis, and prediction of treatment response in CLL patients.


Assuntos
Aberrações Cromossômicas , Metilação de DNA , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Análise Citogenética/métodos , Heterogeneidade Genética , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , MicroRNAs/genética , Fosfoproteínas/genética , Prognóstico , Fatores de Processamento de RNA , Receptor Notch1/genética , Ribonucleoproteína Nuclear Pequena U2/genética
16.
Pharmacogenet Genomics ; 22(5): 381-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22388797

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. It is well known that CML cells are genetically unstable. However, the mechanisms by which these cells acquire genetic alterations are poorly understood. Imatinib mesylate is the standard therapy for newly diagnosed CML patients. Imatinib mesylate targets the oncogenic kinase activity of BCR-ABL. OBJECTIVE: To study the gene expression profile of bone marrow hematopoietic cells in the same patients with CML before and 1 month after imatinib therapy. METHODS: Samples from patients with CML were analyzed using Affymetrix GeneChip Expression Arrays. RESULTS: A total of 594 differentially expressed genes, most of which (393 genes) were downregulated, as a result of imatinib therapy were observed. CONCLUSION: The blockade of oncoprotein Bcr-Abl by imatinib could cause a decrease in the expression of key DNA repair genes and substantially modify the expression profile of the bone marrow cells in the first days of therapy.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Adolescente , Adulto , Benzamidas , Células da Medula Óssea/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...