Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Nutr Metab ; 2024: 6102611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364430

RESUMO

Background: Benfotiamine, a synthetic analog of thiamine, offers greater bioavailability compared to other thiamine salts and increases thiamine stores upon oral intake. Thiamine is essential for energy metabolism. This study aimed to evaluate the effects of oral benfotiamine supplementation on energy metabolism, particularly the Krebs cycle function, in the muscle of endurance-trained mice, and to assess its impact on endurance performance. Methods: Twenty-five mice were randomly assigned to four groups: a standard diet with sedentary behavior (Sta-Sed), a benfotiamine-supplemented diet with sedentary behavior (Ben-Sed), a standard diet with swimming training (Sta-Tr), and a benfotiamine-supplemented diet with swimming training (Ben-Tr). The trained groups underwent five weekly swimming sessions for six weeks, followed by an exhaustive test. Thiamine and its esters were measured in erythrocytes and gastrocnemius muscle. Gene expression of pyruvate dehydrogenase (PDHa) and alpha-ketoglutarate dehydrogenase (OGDH), along with levels of pyruvic, lactic, and hydroxybutyric acids in muscle, was analyzed. Results: The benfotiamine-supplemented groups had higher thiamine levels in erythrocytes and muscles compared to the standard-diet groups. No differences were observed in PDHa and OGDH gene expression. The Ben-Tr group exhibited increased muscle lactic acid levels and a higher lactic acid to pyruvic acid ratio compared to the sedentary groups. Hydroxybutyric acid levels were also elevated in the Ben-Tr group. No significant differences in exhaustive test duration were found between the groups. Conclusion: Benfotiamine supplementation increases thiamine levels in erythrocytes and muscle but does not affect the gene expression of thiamine-dependent enzymes. Although it alters energy metabolism in trained muscle, it does not enhance endurance performance in mice.

2.
Wiley Interdiscip Rev RNA ; 15(5): e1870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268566

RESUMO

Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/genética
3.
Cell Death Discov ; 10(1): 390, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209810

RESUMO

Acute myeloid leukaemia (AML) is a lethal bone marrow neoplasm caused by genetic alterations in blood cell progenitors. Leukaemic stem cells (LSCs) are responsible for the development of AML, drug resistance and relapse. Bithionol is an old anthelmintic drug with potential antibacterial, antiviral, antifungal, anti-Alzheimer, and antitumour properties. In this work, we focused on the anti-AML LSC properties of bithionol. This compound inhibited the viability of both solid and haematological cancer cells, suppressed AML stem-like cells, and inhibited AML growth in NSG mice at a dosage of 50 mg/kg, with tolerable systemic toxicity. Bithionol significantly reduced the levels of phospho-NF-κB p65 (Ser529) and phospho-NF-κB p65 (Ser536) and nuclear NF-κB p65 translocation in AML cells, indicating that this molecule can suppress NF-κB signalling. DNA fragmentation, nuclear condensation, cell shrinkage, phosphatidylserine externalisation, loss of transmembrane mitochondrial potential, caspase-3 activation and PARP-(Asp 214) cleavage were detected in bithionol-treated AML cells, indicating the induction of apoptosis. Furthermore, this compound increased mitochondrial superoxide levels, and bithionol-induced cell death was partially prevented by cotreatment with the selective ferroptosis inhibitor ferrostatin-1, indicating the induction of ferroptosis. In addition, bithionol synergised with venetoclax in AML cells, indicating the translational potential of bithionol to enhance the effects of venetoclax in patients with AML. Taken together, these data indicate that bithionol is a potential new anti-AML drug.

4.
J Mech Behav Biomed Mater ; 157: 106608, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38833781

RESUMO

This study assessed the monotonic and fatigue flexural strength (FS), elastic modulus (E), and surface characteristics of a 3D printed zirconia-containing resin composite compared to subtractive and conventional layering methods. Specimens, including discs (n = 15; Ø = 15 mm × 1.2 mm) and bars (n = 15; 14 × 4 × 1.2 mm), were prepared and categorized into three groups: 3D printing (3D printing - PriZma 3D Bio Crown, Makertech), Subtractive (Lava Ultimate blocks, 3M), and Layering (Filtek Z350 XT, 3M). Monotonic tests were performed on the discs using a piston-on-three-balls setup, while fatigue tests employed similar parameters with a frequency of 10 Hz, initial stress at 20 MPa, and stress increments every 5000 cycles. The E was determined through three-point-bending test using bars. Surface roughness, fractographic, and topographic analyses were conducted. Statistical analyses included One-way ANOVA for monotonic FS and roughness, Kruskal-Wallis for E, and Kaplan-Meier with post-hoc Mantel-Cox and Weibull analysis for fatigue strength. Results revealed higher monotonic strength in the Subtractive group compared to 3D printing (p = 0.02) and Layering (p = 0.04), while 3D Printing and Layering exhibited similarities (p = 0.88). Fatigue data indicated significant differences across all groups (3D Printing < Layering < Subtractive; p = 0.00 and p = 0.04, respectively). Mechanical reliability was comparable across groups. 3D printing and Subtractive demonstrated similar E, both surpassing Layering. Moreover, 3D printing exhibited higher surface roughness than Subtractive and Layering (p < 0.05). Fractographic analysis indicated that fractures initiated at surface defects located in the area subjected to tensile stress concentration. A porous surface was observed in the 3D Printing group and a more compact surface in Subtractive and Layering methods. This study distinguishes the unique properties of 3D printed resin when compared to conventional layering and subtractive methods for resin-based materials. 3D printed shows comparable monotonic strength to layering but lags behind in fatigue strength, with subtractive resin demonstrating superior performance. Both 3D printed and subtractive exhibit similar elastic moduli, surpassing layering. However, 3D printed resin displays higher surface roughness compared to subtractive and layering methods. The study suggests a need for improvement in the mechanical performance of 3D printed material.


Assuntos
Teste de Materiais , Fenômenos Mecânicos , Impressão Tridimensional , Propriedades de Superfície , Zircônio , Zircônio/química , Estresse Mecânico , Módulo de Elasticidade , Testes Mecânicos
5.
Braz Oral Res ; 38: e053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922213

RESUMO

To evaluate the effect of acidic challenge on erosion depth and topographic characteristics of different materials used as occlusal sealants. Two hundred specimens of five sealant materials (Fuji IX, Ketac Molar, Fuji II, Equia and Clinpro) and forty bovine teeth enamel samples (control) were prepared and exposed to acidic challenge. The specimens were immersed in four different solutions (orange juice, coke drink, citric acid or distilled water) under mildly shaken conditions for 3 days. The erosion depth profiles were measured using a profilometer and Scanning Electron Microscope (SEM). Two-way ANOVA with Tukey post-hoc test was performed to evaluate the interactions. Sealant material and acidic challenge had significant effects on erosion depth. Among the materials, Fuji II presented the highest mean of erosion depth after immersion in orange juice, coke drink, and citric acid. All materials groups presented higher erosion depth values after immersion in the citric acid solution, except Clinpro. Bovine enamel presented higher erosion depth values compared to all materials when submitted to erosive challenge. Sealant materials submitted to the acidic challenge presented different degrees of erosion and topographic modification; however, they are less susceptible to erosion than bovine teeth enamel.


Assuntos
Ácido Cítrico , Esmalte Dentário , Teste de Materiais , Microscopia Eletrônica de Varredura , Selantes de Fossas e Fissuras , Propriedades de Superfície , Erosão Dentária , Bovinos , Animais , Erosão Dentária/prevenção & controle , Erosão Dentária/induzido quimicamente , Esmalte Dentário/efeitos dos fármacos , Selantes de Fossas e Fissuras/química , Análise de Variância , Fatores de Tempo , Propriedades de Superfície/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/uso terapêutico , Reprodutibilidade dos Testes , Bebidas Gaseificadas/efeitos adversos , Valores de Referência , Concentração de Íons de Hidrogênio , Resinas Compostas/química
6.
Arch Toxicol ; 98(7): 2153-2171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806720

RESUMO

Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.


Assuntos
Simulação por Computador , Queratinócitos , Ácidos Ftálicos , Humanos , Queratinócitos/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Células HaCaT , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Relação Quantitativa Estrutura-Atividade , Plastificantes/toxicidade , Células THP-1 , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Linhagem Celular
7.
Cell Death Discov ; 10(1): 201, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684672

RESUMO

Acute myeloid leukemia (AML) is a fatal malignancy of the blood and bone marrow. Leukemic stem cells (LSCs) are a rare subset of leukemic cells that promote the development and progression of AML, and eradication of LSCs is critical for effective control of this disease. Emetine is an FDA-approved antiparasitic drug with antitumor properties; however, little is known about its potential against LSCs. Herein, we explored the antileukemic potential of emetine, focusing on its effects on AML stem/progenitor cells. Emetine exhibited potent cytotoxic activity both in hematologic and solid cancer cells and induced AML cell differentiation. Emetine also inhibited AML stem/progenitor cells, as evidenced by decreased expression of CD34, CD97, CD99, and CD123 in KG-1a cells, indicating anti-AML stem/progenitor cell activities. The administration of emetine at a dosage of 10 mg/kg for two weeks showed no significant toxicity and significantly reduced xenograft leukemic growth in vivo. NF-κB activation was reduced in emetine-treated KG-1a cells, as shown by reduced phospho-NF-κB p65 (S529) and nuclear NF-κB p65. DNA fragmentation, YO-PRO-1 staining, mitochondrial depolarization and increased levels of active caspase-3 and cleaved PARP (Asp214) were detected in emetine-treated KG-1a cells. Moreover, treatment with the pancaspase inhibitor Z-VAD(OMe)-FMK partially prevented the apoptotic cell death induced by emetine. Emetine treatment also increased cellular and mitochondrial reactive oxygen species, and emetine-induced apoptosis in KG-1a cells was partially prevented by the antioxidant N-acetylcysteine, indicating that emetine induces apoptosis, at least in part, by inducing oxidative stress. Overall, these studies indicate that emetine is a novel potential anti-AML agent with promising activity against stem/progenitor cells, encouraging the development of further studies aimed at its clinical application.

8.
J Cell Mol Med ; 28(8): e18333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652192

RESUMO

Acute myelogenous leukaemia (AML) originates and is maintained by leukaemic stem cells (LSCs) that are inherently resistant to antiproliferative therapies, indicating that a critical strategy for overcoming chemoresistance in AML therapy is to eradicate LSCs. In this work, we investigated the anti-AML activity of bortezomib (BTZ), emphasizing its anti-LSC potential, using KG-1a cells, an AML cell line with stem-like properties. BTZ presented potent cytotoxicity to both solid and haematological malignancy cells and reduced the stem-like features of KG-1a cells, as observed by the reduction in CD34- and CD123-positive cells. A reduction in NF-κB p65 nuclear staining was observed in BTZ-treated KG-1a cells, in addition to upregulation of the NF-κB inhibitor gene NFΚBIB. BTZ-induced DNA fragmentation, nuclear condensation, cell shrinkage and loss of transmembrane mitochondrial potential along with an increase in active caspase-3 and cleaved PARP-(Asp 214) level in KG-1a cells. Furthermore, BTZ-induced cell death was partially prevented by pretreatment with the pancaspase inhibitor Z-VAD-(OMe)-FMK, indicating that BTZ induces caspase-mediated apoptosis. BTZ also increased mitochondrial superoxide levels in KG-1a cells, and BTZ-induced apoptosis was partially prevented by pretreatment with the antioxidant N-acetylcysteine, indicating that BTZ induces oxidative stress-mediated apoptosis in KG-1a cells. At a dosage of 0.1 mg/kg every other day for 2 weeks, BTZ significantly reduced the percentage of hCD45-positive cells in the bone marrow and peripheral blood of NSG mice engrafted with KG-1a cells with tolerable toxicity. Taken together, these data indicate that the anti-LSC potential of BTZ appears to be an important strategy for AML treatment.


Assuntos
Bortezomib , Leucemia Mieloide Aguda , NF-kappa B , Células-Tronco Neoplásicas , Estresse Oxidativo , Bortezomib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Animais , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos SCID
9.
Cell Death Discov ; 10(1): 147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503729

RESUMO

Acute myeloid leukaemia (AML) is a haematological malignancy characterised by the accumulation of transformed myeloid progenitors in the bone marrow. Piplartine (PL), also known as piperlongumine, is a pro-oxidant small molecule extracted from peppers that has demonstrated antineoplastic potential in solid tumours and other haematological malignancies. In this work, we explored the potential of PL to treat AML through the use of a combination of cellular and molecular analyses of primary and cultured leukaemia cells in vitro and in vivo. We showed that PL exhibits in vitro cytotoxicity against AML cells, including CD34+ leukaemia-propagating cells, but not healthy haematopoietic progenitors, suggesting anti-leukaemia selectivity. Mechanistically, PL treatment increased reactive oxygen species (ROS) levels and induced ROS-mediated apoptosis in AML cells, which could be prevented by treatment with the antioxidant scavenger N-acetyl-cysteine and the pancaspase inhibitor Z-VAD(OMe)-FMK. PL treatment reduced NFKB1 gene transcription and the level of NF-κB p65 (pS536), which was depleted from the nucleus of AML cells, indicating suppression of NF-κB p65 signalling. Significantly, PL suppressed AML development in a mouse xenograft model, and its combination with current AML treatments (cytarabine, daunorubicin and azacytidine) had synergistic effects, indicating translational therapeutic potential. Taken together, these data position PL as a novel anti-AML candidate drug that can target leukaemia stem/progenitors and is amenable to combinatorial therapeutic strategies.

10.
Phytomedicine ; 128: 155536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513379

RESUMO

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Assuntos
Butiratos , Neoplasias Pulmonares , Sesquiterpenos , Sesquiterpenos/farmacologia , Butiratos/farmacologia , Traqueófitas/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Células A549 , Células THP-1 , Testes de Toxicidade , Movimento Celular/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167078, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364941

RESUMO

Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS: The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS: An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS: We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION: Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.


Assuntos
Diabetes Mellitus , Hiperglicemia , Leishmania , Leishmaniose , Animais , Camundongos , Camundongos Endogâmicos C57BL , Leishmaniose/complicações , Leishmaniose/parasitologia , Leishmania/fisiologia , Macrófagos , Hiperglicemia/complicações , Imunidade
12.
Biomed Pharmacother ; 170: 115979, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061138

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 µM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 µM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and ß-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Feminino , Humanos , Animais , Camundongos , Ovinos , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Estresse Oxidativo , Estresse Fisiológico
13.
Braz. oral res. (Online) ; 38: e053, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1564191

RESUMO

Abstract To evaluate the effect of acidic challenge on erosion depth and topographic characteristics of different materials used as occlusal sealants. Two hundred specimens of five sealant materials (Fuji IX, Ketac Molar, Fuji II, Equia and Clinpro) and forty bovine teeth enamel samples (control) were prepared and exposed to acidic challenge. The specimens were immersed in four different solutions (orange juice, coke drink, citric acid or distilled water) under mildly shaken conditions for 3 days. The erosion depth profiles were measured using a profilometer and Scanning Electron Microscope (SEM). Two-way ANOVA with Tukey post-hoc test was performed to evaluate the interactions. Sealant material and acidic challenge had significant effects on erosion depth. Among the materials, Fuji II presented the highest mean of erosion depth after immersion in orange juice, coke drink, and citric acid. All materials groups presented higher erosion depth values after immersion in the citric acid solution, except Clinpro. Bovine enamel presented higher erosion depth values compared to all materials when submitted to erosive challenge. Sealant materials submitted to the acidic challenge presented different degrees of erosion and topographic modification; however, they are less susceptible to erosion than bovine teeth enamel.

14.
Viruses ; 15(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140593

RESUMO

After the Coronavirus pandemic, the importance of virus surveillance was highlighted, reinforcing the constant necessity of discussing and updating the methods for collection and diagnoses, including for other respiratory viruses. Although the nasopharyngeal swab is the gold-standard sample for detecting and genotyping SARS-CoV-2 and Influenza viruses, its collection is uncomfortable and requires specialized teams, which can be costly. During the pandemic, non-invasive saliva samples proved to be a suitable alternative for SARS-CoV-2 diagnosis, but for Influenza virus the use of this sample source is not recognized yet. In addition, most SARS-CoV-2 comparisons were conducted before the Omicron variant emerged. Here, we aimed to compare Influenza A and Omicron RT-qPCR analysis of nasopharyngeal swabs and saliva self-collection in paired samples from 663 individuals. We found that both nasopharyngeal swab and saliva collection are efficient for the diagnosis of Omicron (including sub-lineages) and for Influenza A, with high sensitivity and accuracy (>90%). The kappa index is 0.938 for Influenza A and 0.905 for SARS-CoV-2. These results showed excellent agreement between the two samples reinforcing saliva samples as a reliable source for detecting Omicron and highlighting saliva as a valid sample source for Influenza detection, considering this cheaper and more comfortable alternative.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/diagnóstico , Teste para COVID-19 , SARS-CoV-2/genética , Saliva , COVID-19/diagnóstico , Nasofaringe , Manejo de Espécimes
15.
PLoS One ; 18(11): e0294904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019810

RESUMO

Profiling the variability related to the estrous cycle is essential for assessing depressive-like behavior and screening drugs. This study compares circulating plasma corticosterone levels [CORT] and behavioral alterations in mice exposed to sucrose preference, forced swimming, and tail suspension tests (SPT, FST, and TST, respectively). While SPT exposure did not significantly alter [CORT], FST and TST showed notable changes. Mice in the TST exhibited increased movement and decreased immobility time compared to FST, suggesting a lower likelihood of depressive-like behavior in male mice. Notably, during the proestrus phase, female mice displayed the highest tendency for depressive-like behavior and elevated [CORT], but similar response to antidepressants (imipramine and fluoxetine). The inherent stress of the FST and TST tasks appears to influence [CORT] as well as depressant and antidepressant effects. These comparisons provide valuable insights for further behavioral phenotyping, model sensitivity assessment, and deepen our neurobiological understanding of depression in the context of drug screening.


Assuntos
Antidepressivos , Fluoxetina , Camundongos , Masculino , Feminino , Animais , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Depressão/tratamento farmacológico , Imipramina/farmacologia , Comportamento Animal , Natação , Modelos Animais de Doenças , Corticosterona , Elevação dos Membros Posteriores
16.
Front Cell Infect Microbiol ; 13: 1260448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799331

RESUMO

Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.


Assuntos
Antiprotozoários , Produtos Biológicos , Leishmania , Leishmaniose , Humanos , Terpenos/farmacologia , Terpenos/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Morte Celular , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
17.
Pathogens ; 12(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242330

RESUMO

American tegumentary leishmaniasis, a zoonotic disease caused by the Leishmania genus, poses significant challenges in treatment, including administration difficulty, low efficacy, and parasite resistance. Novel compounds or associations offer alternative therapies, and natural products such as oregano essential oil (OEO), extracted from Origanum vulgare, have been extensively researched due to biological effects, including antibacterial, antifungal, and antiparasitic properties. Silver nanoparticles (AgNp), a nanomaterial with compelling antimicrobial and antiparasitic activity, have been shown to exhibit potent leishmanicidal properties. We evaluated the in vitro effect of OEO and AgNp-Bio association on L. amazonensis and the death mechanisms of the parasite involved. Our results demonstrated a synergistic antileishmanial effect of OEO + AgNp on promastigote forms and L. amazonensis-infected macrophages, which induced morphological and ultrastructural changes in promastigotes. Subsequently, we investigated the mechanisms underlying parasite death and showed an increase in NO, ROS, mitochondrial depolarization, accumulation of lipid-storage bodies, autophagic vacuoles, phosphatidylserine exposure, and damage to the plasma membrane. Moreover, the association resulted in a reduction in the percentage of infected cells and the number of amastigotes per macrophage. In conclusion, our findings establish that OEO + AgNp elicits a late apoptosis-like mechanism to combat promastigote forms and promotes ROS and NO production in infected macrophages to target intracellular amastigote forms.

18.
Toxicology ; 493: 153548, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207816

RESUMO

One of the major challenges in chemical toxicity testing is the possibility to protect human health against adverse effects with non-animal methods. In this paper, 4-Octylphenol (OP) was tested for skin sensitization and immunomodulatory effects using an integrated in silico-in vitro test approach. In silico tools (QSAR TOOLBOX 4.5, ToxTree and VEGA) were used together with several in vitro tests including HaCaT cells (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA and expression of genes TNF, IL1A, IL6 and IL8 by RT- qPCR), RHE model (quantification of IL-6; IL-8; IL-1α and IL-18 by ELISA) and THP-1 activation assay (CD86/CD54 expression and IL-8 release). Additionally, the immunomodulatory effect of OP was investigated using lncRNAs MALAT1 and NEAT1 expression and LPS-induced THP-1 activation (CD86/CD54 expression and IL-8 release). The in silico tools predicted OP as a sensitizer. In vitro tests are also concordant with the in silico prediction. OP increased IL-6 expression (HaCaT cells); IL-18 and IL-8 expressions (RHE model). An irritant potential was also shown by a great expression of IL-1α (RHE model); and increased expression of CD54 marker and IL-8 in THP-1 cells. Immunomodulatory effects of OP were demonstrated by the downregulation of NEAT1, MALAT1 (epigenetic markers), IL6 and IL8; and an increase in LPS-induced CD54 and IL-8 expressions. Overall, results indicate that OP is a skin sensitizer, being positive in three key events of the AOP for skin sensitization, also showing immunomodulatory effects.


Assuntos
Interleucina-8 , RNA Longo não Codificante , Humanos , Interleucina-8/genética , Interleucina-18/farmacologia , Interleucina-6 , Lipopolissacarídeos/toxicidade , Antígeno B7-2/metabolismo , Antígeno B7-2/farmacologia , Pele , Alérgenos
19.
Redox Biol ; 62: 102692, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031536

RESUMO

Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Homeostase
20.
Microbes Infect ; 25(7): 105145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120010

RESUMO

Schistosomiasis is a neglected tropical parasitic disease that affects millions of people, being the second most prevalent parasitic disease worldwide. The current treatment has limited effectiveness, drug-resistant strains, and is not effective in different stages of the disease. This study investigated the antischistosomal activity of biogenic silver nanoparticles (Bio-AgNp) against Schistosoma mansoni. Bio-AgNp presented direct schistosomicidal activity on newly transformed schistosomula causing plasma membrane permeabilization. In S. mansoni adult worms, reduced the viability and affected the motility, increasing oxidative stress parameters, and inducing plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid bodies accumulation, and autophagic vacuoles formation. During the experimental schistosomiasis mansoni model, Bio AgNp restored body weight, reduced hepatosplenomegaly, and decrease the number of eggs and worms in feces and liver tissue. The treatment also ameliorates liver damage and reduces macrophage and neutrophil infiltrates. A reduction in count and size was evaluated in the granulomas, as well as a change to an exudative-proliferative phase, with a local increase of IFN-γ. Together our results showed that Bio-AgNp is a promising therapeutic candidate for studies of new therapeutic strategies against schistosomiasis.


Assuntos
Nanopartículas Metálicas , Esquistossomose mansoni , Esquistossomicidas , Animais , Humanos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Prata/farmacologia , Schistosoma mansoni
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA