Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zoo Biol ; 42(1): 119-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35652411

RESUMO

Due to their major medical importance in Latin America, lancehead pitvipers are frequently kept and bred in captivity for venom extraction to the production of antivenom serums. Nevertheless, despite the great contribution given to captive breeding, much of the knowledge of Bothrops' reproductive biology derived from sporadic and insufficient data provided by zoological collections. Thus, we aimed to investigate seasonal changes in gonadosomatic index (GSI) and seminal parameters (e.g., volume, concentration, motility, viability, and acrosome integrity) of five species of lancehead pitvipers from different biomes and phylogenetic groups, maintained in the indoors serpentarium at Butantan Institute (Brazil). Patterns of variation in GSI and semen parameters differed from one species to another, suggesting that captive populations should perhaps be managed distinctly to maximize reproductive success. Furthermore, in none of the studied species did changes in GSI occur concomitantly with seminal variations. GSI remained unaltered year-round for Jararaca (Bothrops jararaca) and Brazilian lancehead (Bothrops moojeni), whereas it peaked in the autumn for Common lancehead (Bothrops atrox), Jararacussu (Bothrops jararacussu), and Whitetail lancehead (Bothrops leucurus). But surprisingly, the scenario was inverted when we estimated the total number of motile spermatozoa per season, as Jararaca and Brazilian lancehead displayed seasonal differences and the other species did not vary throughout the year. Potential ecological and evolutionary factors underlying these differences were also discussed in the present article. Together, these findings can help to better define breeding management strategies for each species in captivity, in addition to optimizing the future use of artificial insemination and semen cryopreservation.


Assuntos
Bothrops , Masculino , Animais , Estações do Ano , Filogenia , Animais de Zoológico , Sêmen
2.
Zoo Biology, v. 42, 119–132, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4384

RESUMO

Due to their major medical importance in Latin America, lancehead pitvipers are frequently kept and bred in captivity for venom extraction to the production of antivenom serums. Nevertheless, despite the great contribution given to captive breeding, much of the knowledge of Bothrops' reproductive biology derived from sporadic and insufficient data provided by zoological collections. Thus, we aimed to investigate seasonal changes in gonadosomatic index (GSI) and seminal parameters (e.g., volume, concentration, motility, viability, and acrosome integrity) of five species of lancehead pitvipers from different biomes and phylogenetic groups, maintained in the indoors serpentarium at Butantan Institute (Brazil). Patterns of variation in GSI and semen parameters differed from one species to another, suggesting that captive populations should perhaps be managed distinctly to maximize reproductive success. Furthermore, in none of the studied species did changes in GSI occur concomitantly with seminal variations. GSI remained unaltered year-round for Jararaca (Bothrops jararaca) and Brazilian lancehead (Bothrops moojeni), whereas it peaked in the autumn for Common lancehead (Bothrops atrox), Jararacussu (Bothrops jararacussu), and Whitetail lancehead (Bothrops leucurus). But surprisingly, the scenario was inverted when we estimated the total number of motile spermatozoa per season, as Jararaca and Brazilian lancehead displayed seasonal differences and the other species did not vary throughout the year. Potential ecological and evolutionary factors underlying these differences were also discussed in the present article. Together, these findings can help to better define breeding management strategies for each species in captivity, in addition to optimizing the future use of artificial insemination and semen cryopreservation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33597972

RESUMO

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.

4.
J. venom. anim. toxins incl. trop. dis ; 27: e20200068, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154772

RESUMO

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Viperidae , Venenos Elapídicos/biossíntese , Bem-Estar do Animal , Custos e Análise de Custo
5.
J Venom Anim Toxins Trop Dis, v. 27, e20200068, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3563

RESUMO

Maintenance of snakes at Butantan Institute started in the last century, intending to produce a different antivenom serum to reduce death caused by snakebites. Through a successful campaign coordinated by Vital Brazil, farmers sent venomous snakes to Butantan Institute by the railway lines with no cost. From 1908 to 1962, the snakes were kept in an outdoor serpentarium, where venom extraction was performed every 15 days. During this period, the snake average survival was 15 days. In 1963, the snakes were transferred to an adapted building, currently called Laboratory of Herpetology (LH), to be maintained in an intensive system. Although the periodicity of venom extraction remained the same, animal average survival increased to two months. With the severe serum crisis in 1983, the Ministry of Health financed remodeling for the three public antivenom producers, and with this support, the LH could be improved. Air conditioning and exhausting systems were installed in the rooms, besides the settlement of critical hygienic-sanitary managements to increase the welfare of snakes. In the early 1990s, snake survival was ten months. Over the years to the present day, several improvements have been made in the intensive serpentarium, as the establishment of two quarantines, feeding with thawed rodents, an interval of two months between venom extraction routines, and monitoring of snake health through laboratory tests. With these new protocols, average snake survival increased significantly, being eight years for the genus Bothrops, ten years for genus Crotalus and Lachesis, and four years for the genus Micrurus. Aiming the production of venoms of good quality, respect for good management practices is essential for the maintenance of snakes in captivity. New techniques and efficient management must always be sought to improve animal welfare, the quality of the venom produced, and the safety of those working directly with the venomous snakes.

6.
Toxicon, v. 186, p. 67-77, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3129

RESUMO

Concerning snake venoms, numerous authors worked with different species of Bothrops focusing on the ontogeny of these animals. However, according to PubMed database, no results on studies related to Bothrops jararacussu ontogeny were displayed until now. This fact led us to develop a greater interest in the venom ontogenetic variability of this species, which is little explored so far. Among snakes of the genus Bothrops, B. jararacussu was previously described as the one with highest myotoxic activity. Another peculiarity was also observed in its venom: a low rate of immunogenicity. In addition, its activity is not efficiently neutralized by the specific antibothropic serum. Considering these particularities, we performed an ontogenetic study of B. jararacussu using venom samples from newborns of the same litter (<6 months) and adults (>24 months). Our results identified two distinct profiles in the venom of these animals: young individuals with little PLA2 K-49 and more proteases; and adults with a lot of the same myotoxic PLA2, but less proteases. The HPLC and SDS-PAGE profiles corroborated our findings. Adults showed more hemorrhagic activity in vivo than juveniles, while adult males showed less activity when compared to females. In vivo myotoxicity activity was higher in adults than in juveniles. Immune recognition assays showed different results for the distinct venom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...