Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759621

RESUMO

Chagas disease therapy still relies on two nitroderivatives, nifurtimox and benznidazole (Bz), which have important limitations and serious adverse effects. New therapeutic alternatives for this silent disease, which has become a worldwide public health problem, are essential for its control and elimination. In this study, 1,2,3-triazole analogues were evaluated for efficacy against T. cruzi. Three triazole derivatives, 1d (0.21 µM), 1f (1.23 µM), and 1g (2.28 µM), showed potent activity against trypomastigotes, reaching IC50 values 10 to 100 times greater than Bz (22.79 µM). Promising candidates are active against intracellular amastigotes (IC50 ≤ 6.20 µM). Treatment of 3D cardiac spheroids, a translational in vitro model, significantly reduced parasite load, indicating good drug diffusion and efficacy. Oral bioavailability was predicted for triazole derivatives. Although infection was significantly reduced without drug pressure in a washout assay, the triazole derivatives did not inhibit parasite resurgence. An isobologram analysis revealed an additive interaction when 1,2,3-triazole analogs and Bz were combined in vitro. These data indicate a strengthened potential of the triazole scaffold and encourage optimization based on an analysis of the structure-activity relationship aimed at identifying new compounds potentially active against T. cruzi.

2.
Expert Opin Drug Discov ; 17(10): 1147-1158, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36039500

RESUMO

INTRODUCTION: Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED: We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION: The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.


Assuntos
Antiprotozoários , Anidrases Carbônicas , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Inibidores da Anidrase Carbônica/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Antiprotozoários/farmacologia , Tripanossomicidas/farmacologia
3.
Expert Opin Drug Discov ; 15(2): 145-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670987

RESUMO

Introduction: Chagas disease (CD) is a neglected disease caused by the protozoan parasite Trypanosoma cruzi. In terms of novel drug discovery, there has been no progress since the 1960s with the same two drugs, benznidazole and nifurtimox, still in use. The complex life cycle, genetic diversity of T. cruzi strains, different sensitivities to the available drugs, as well as little interest from pharmaceutical companies and inadequate methodologies for translating in vitro and in vivo findings to the discovery of new drugs have all contributed to the lack of progress.Areas covered: In this perspective, the authors give discussion to the relevant points connected to the lack of developments in CD drug discovery and provide their expert perspectives.Expert opinion: There are few drugs currently in the preclinical pipeline for the treatment of CD. Only three classes of compounds have been shown to achieve high cure rates in mouse models of infection: nitroimidazoles (fexinidazole), oxaborole DNDi-6148 and proteasome inhibitors (GNF6702). New biomarkers for Chagas' disease are urgently needed for the diagnosis and detection of cure/treatment efficacy. Efforts from academia and pharmaceutical companies are in progress and more intense interaction to accelerate the process of new drugs development is necessary.


Assuntos
Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Tripanossomicidas/farmacologia , Animais , Biomarcadores , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Humanos , Camundongos , Trypanosoma cruzi/efeitos dos fármacos
4.
J Enzyme Inhib Med Chem ; 31(6): 964-73, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26327246

RESUMO

This work describes the antitrypanocidal activity of two hydroxamic acid derivatives containing o-ethoxy (HAD1) and p-ethoxy (HAD2) as substituent in the aromatic ring linked to the isoxazoline ring. HAD1 and HAD2 induced a significant reduction in the number of intracellular parasites and consequently showed activity on the multiplication of the parasite. Treatment of cardiomyocytes and macrophages with the compounds revealed no significant loss in cell viability. Ultrastructural alterations after treatment of cardiomyocytes or macrophages infected by Trypanosoma cruzi with the IC50 value of HAD1 revealed alterations to amastigotes, showing initial damage seen as swelling of the kinetoplast. This gave a good indication of the ability of the drug to permeate through the host cell membrane as well as its selectivity to the parasite target. Both compounds HAD1 and 2 were able to reduce the cysteine peptidases and decrease the activity of metallopeptidases.


Assuntos
Doença de Chagas/tratamento farmacológico , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Doença de Chagas/microbiologia , Relação Dose-Resposta a Droga , Ácidos Hidroxâmicos/síntese química , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/microbiologia , Relação Estrutura-Atividade , Tripanossomicidas/síntese química
5.
J Med Chem ; 57(2): 298-308, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24299463

RESUMO

Today, there are approximately 8 million cases of Chagas disease in the southern cone of South America alone, and about 100 million people are living with the risk of becoming infected. The present pharmacotherapy is sometimes ineffective and has serious side effects. Here, we report a series of 4,5-dihydroisoxazoles incorporating hydroxamate moieties, which act as effective inhibitors of the carbonic anhydrase (CA) from Trypanosoma cruzi (TcCA). One compound (5g) was evaluated in detail and shows promising features as an antitrypanosomal agent. Excellent values for the inhibition of growth for all three developmental forms of the parasite were observed at low concentrations of 5g (IC50 values from 7.0 to <1 µM). The compound has a selectivity index (SI) of 6.7 and no cytotoxicity to macrophage cells. Preliminary in vivo data showed that 5g reduces bloodstream parasites and that all treated mice survived; it was also more effective than the standard drug benznidazole.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Doença de Chagas/tratamento farmacológico , Ácidos Hidroxâmicos/síntese química , Isoxazóis/síntese química , Inibidores de Proteases/síntese química , Tripanossomicidas/síntese química , Animais , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Doença de Chagas/parasitologia , Desenho de Fármacos , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Isoxazóis/química , Isoxazóis/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...