Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887779

RESUMO

Human African trypanosomiasis (also known as sleeping sickness, with Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense as etiological agents), American trypanosomiasis (also known as Chagas disease, with Trypanosoma cruzi as the etiological agent), and leishmaniasis (including cutaneous, mucocutaneous, and visceral forms, with multiple species belonging to the Leishmania genus as etiological agents) are recognized as neglected tropical diseases (NTDs) [...].

2.
Trop Med Infect Dis ; 8(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37505671

RESUMO

Human tegumentary leishmaniasis (HTL) is a serious tropical disease caused by Leishmania amazonensis. Developing new leishmanicidal agents can help overcome current treatment challenges, such as drug resistance and toxicity. Essential oils are a source of lipophilic substances with diverse therapeutic properties. This study aimed to determine the anti-L. amazonensis activity, cytotoxicity, and chemical profile of Allium sativum essential oil (ASEO). The effect of ASEO on parasite and mammalian cells viability was evaluated using resazurin and MTT assays, respectively. The oil's effect against intracellular amastigotes was also determined. Transmission electron microscopy was used to assess the ultrastructural changes induced by ASEO. In addition, the chemical constituents of ASEO were identified by gas chromatography-mass spectrometry (GC-MS). The cytotoxic potential was evaluated in vitro and in silico. The oil displayed IC50 of 1.76, 3.46, and 3.77 µg/mL against promastigotes, axenic, and intracellular amastigotes, respectively. Photomicrographs of treated parasites showed plasma membrane disruption, increased lipid bodies, and autophagic-like structures. ASEO chemical profiling revealed 1,2,4,6-tetrathiepane (24.84%) and diallyl disulfide (16.75%) as major components. Computational pharmacokinetics and toxicological analysis of ASEO's major components demonstrated good oral bioavailability and better toxicological endpoints than the reference drugs. Altogether, the results suggest that ASEO could be an alternative drug candidate against HTL.

3.
Foods ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36613396

RESUMO

Stingless bee honey (SBH) is gaining attention due to its nutritional, sensorial, and medicinal characteristics. This study focuses on the combination of physicochemical properties, antioxidant capacity, mineral profile, and mass spectrometry-based fingerprints, using a chemometric approach to differentiate SBH (n = 18) from three different Brazilian biogeographical zones (Caatinga, Cerrado, and Atlantic Forest). The physicochemical properties of SBH varied, resulting in a wide range of water activity, moisture, total soluble solids, pH, and total and free acidity. The Caatinga honey showed the highest and the lowest contents of phenolics and flavonoids, respectively. The antioxidant free-radical scavenging assays demonstrated that the Brazilian SBH has a high antioxidant potential. The mineral profile of honey samples from the Atlantic Forest revealed higher contents of Ca and Fe while the Cerrado and Caatinga honey showed the highest P contents. Partial Least-Squares Discriminant Analysis (PLS-DA) analysis separated the samples into three groups based on the biogeographical zones of harvest. The main separation factors between groups were the m/z 326 ion and the Fe content. Univariate analysis confirmed that Fe content is important for SBH discrimination. The present results indicate that the origin of SBH can be determined on the basis of mineral profile, especially Fe content.

4.
Chem Biodivers ; 20(2): e202200689, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565272

RESUMO

Leishmania amazonensis is the etiological agent of tegumentary leishmaniasis, a disease characterized by the emergence of cutaneous and mucocutaneous ulcerated lesions that can evolve into severe destruction of skin tissue. Treatment of the disease is often accompanied by high toxicity and variable efficacy. Essential oils stand out for having diverse pharmacological properties. Here, we screened a panel of fourteen essential oils for their anti-L. amazonensis activity, cytotoxicity, and chemical profile. Lippia sidoides (LSEO) and Piper callosum (PCEO) oils displayed the best anti-promastigote and anti-amastigote activities with IC50 of 31 and 21 µg/ml, respectively. PCEO was the safest oil with a desirable selectivity index >10. In addition, PCEO showed no cytotoxicity against the VERO line and erythrocytes. PCEO-treated amastigotes displayed mitochondrial membrane depolarization and high levels of intracellular ROS. Safrole (54.72 %) was the main component of PCEO. The results described here highlight the use of essential oils to combat tegumentary leishmaniasis.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Óleos Voláteis , Piper , Humanos , Animais , Camundongos , Óleos Voláteis/química , Piper/química , Antiprotozoários/química , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB C
5.
Trop Med Infect Dis ; 7(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35736990

RESUMO

Leishmaniasis is a vector-borne disease against which there are no approved vaccines, and the treatment is based on highly toxic drugs. The alkaloids consist of a chemical class of natural nitrogen-containing substances with a long history of antileishmanial activity. The present study aimed at determining the antileishmanial activity and in silico pharmacokinetic and toxicological potentials of tryptanthrin alkaloid. The anti-Leishmania amazonensis and anti-L. infantum assays were performed against both promastigotes and intracellular amastigotes. Cellular viability was determined by parasites' ability to grow (promastigotes) or differentiate (amastigotes) after incubation with tryptanthrin. The mechanisms of action were explored by mitochondrion dysfunction and apoptosis-like death evaluation. For the computational pharmacokinetics and toxicological analysis (ADMET), tryptanthrin was submitted to the PreADMET webserver. The alkaloid displayed anti-promastigote activity against L. amazonensis and L. infantum (IC50 = 11 and 8.0 µM, respectively). Tryptanthrin was active against intracellular amastigotes with IC50 values of 75 and 115 µM, respectively. Mitochondrial membrane depolarization was observed in tryptanthrin-treated promastigotes. In addition, parasites undergoing apoptosis-like death were detected after 18 h of exposure. In silico ADMET predictions revealed that tryptanthrin has pharmacokinetic and toxicological properties similar to miltefosine. The results presented herein demonstrate that tryptanthrin is an interesting drug candidate against leishmaniasis.

6.
Front Chem ; 8: 624678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520939

RESUMO

Arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea, acting as a key enzyme in the biosynthesis of polyamines. Leishmania growth and survival is dependent on polyamine biosynthesis; therefore, inhibition of Leishmania arginase may be a promising therapeutic strategy. Here, we evaluated a series of thirty-six chalcone derivatives as potential inhibitors of Leishmania infantum arginase (LiARG). In addition, the activity of selected inhibitors against L. infantum parasites was assessed in vitro. Seven compounds exhibited LiARG inhibition above 50% at 100 µM. Among them, compounds LC41, LC39, and LC32 displayed the greatest inhibition values (72.3 ± 0.3%, 71.9 ± 11.6%, and 69.5 ± 7.9%, respectively). Molecular docking studies predicted hydrogen bonds and hydrophobic interactions between the most active chalcones (LC32, LC39, and LC41) and specific residues from LiARG's active site, such as His140, Asn153, His155, and Ala193. Compound LC32 showed the highest activity against L. infantum promastigotes (IC50 of 74.1 ± 10.0 µM), whereas compounds LC39 and LC41 displayed the best results against intracellular amastigotes (IC50 of 55.2 ± 3.8 and 70.4 ± 9.6 µM, respectively). Moreover, compound LC39 showed more selectivity against parasites than host cells (macrophages), with a selectivity index (SI) of 107.1, even greater than that of the reference drug Fungizone®. Computational pharmacokinetic and toxicological evaluations showed high oral bioavailability and low toxicity for the most active compounds. The results presented here support the use of substituted chalcone skeletons as promising LiARG inhibitors and antileishmanial drug candidates.

7.
J Enzyme Inhib Med Chem ; 34(1): 1100-1109, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124384

RESUMO

Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 µM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Arginase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leishmania infantum/efeitos dos fármacos , Fenóis/farmacologia , Animais , Antiprotozoários/química , Arginase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Leishmania infantum/enzimologia , Leishmania infantum/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fenóis/química , Células RAW 264.7 , Relação Estrutura-Atividade
8.
Can J Infect Dis Med Microbiol ; 2018: 5295619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073039

RESUMO

Piper is the largest genus of the Piperaceae family. The species of this genus have diverse biological activities and are used in pharmacopeia throughout the world. They are also used in folk medicine for treatment of many diseases in several countries including Brazil, China, India, Jamaica, and Mexico. In Brazil, Piper species are distributed throughout the national territory, making this genus a good candidate for biological activity screening. During our studies with Piper essential oils, we evaluated its activity against Rhizopus oryzae, the main agent of mucormycosis. The main compounds of seven Piper essential oils analyzed were Piper callosum-safrole (53.8%), P. aduncum-dillapiole (76.0%), P. hispidinervum-safrole (91.4%), P. marginatum-propiopiperone (13.2%), P. hispidum-γ-terpinene (30.9%), P. tuberculatum-(E)-caryophyllene (30.1%), and Piper sp.-linalool (14.6%). The minimum inhibitory concentration of Piper essential oils against R. oryzae ranged from 78.12 to >1250 µg/mL. The best result of total inhibition of biofilm formation was obtained with Piper sp. starting from 4.88 µg/mL. Considering the bioactive potential of EOs against planktonic cells and biofilm formation of R. oryzae could be of great interest for development of antimicrobials for therapeutic use in treatment of fungal infection.

9.
Biomed Res Int ; 2018: 9781724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850595

RESUMO

Based on the ethnopharmacological evidences about the antileishmanial activity of Copaifera spp. oleoresins, the effects of crude extracts and fractions of oleoresin of two specimens from Copaifera paupera were evaluated on Leishmania amazonensis and Leishmania infantum strains. The oleoresin rich in α-copaene (38.8%) exhibited the best activity against L. amazonensis (IC50 = 62.5 µg/mL) and against L. infantum (IC50 = 65.9 µg/mL). The sesquiterpene α-copaene isolated was tested alone and exhibited high antileishmanial activity in vitro with IC50 values for L. amazonensis and L. infantum of 17.2 and 11.4 µg/mL, respectively. In order to increase antileishmanial activity, nanoemulsions containing copaiba oleoresin and α-copaene were developed and assayed against L. amazonensis and L. infantum promastigotes. The nanoemulsion containing α-copaene (NANOCOPAEN) showed the best activity against both species, with IC50 of 2.5 and 2.2 µg/mL, respectively. This is the first report about the antileishmanial activity of α-copaene.


Assuntos
Antiprotozoários/farmacologia , Emulsões/química , Fabaceae/química , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Nanopartículas/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Sesquiterpenos/farmacologia
10.
Pharm Biol ; 55(1): 1780-1786, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28524774

RESUMO

CONTEXT: Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease characterized by lesional polymorphism and the commitment of skin surface. Previous reports demonstrated that the Citrus genus possess antimicrobial activity. OBJECTIVE: This study evaluated the anti-L. amazonensis activity of Citrus sinensis (L.) Osbeck (Rutaceae) extracts. MATERIALS AND METHODS: Citrus sinensis dried leaves were subjected to maceration with hexane (CH), ethyl acetate (CEA), dichloromethane/ethanol (CD/Et - 1:1) or ethanol/water (CEt/W - 7:3). Leishmania amazonensis promastigotes were treated with C. sinensis extracts (1-525 µg/mL) for 120 h at 27 °C. Ultrastructure alterations of treated parasites were evaluated by transmission electron microscopy. Cytotoxicity of the extracts was assessed on RAW 264.7 and J774.G8 macrophages after 48-h treatment at 37 °C using the tetrazolium assay. In addition, Leishmania-infected macrophages were treated with CH and CD/Et (10-80 µg/mL). RESULTS: CH, CD/Et and CEA displayed antileishmanial activity with 50% inhibitory activity (IC50) of 25.91 ± 4.87, 54.23 ± 3.78 and 62.74 ± 5.04 µg/mL, respectively. Parasites treated with CD/Et (131.2 µg/mL) presented severe alterations including mitochondrial swelling, lipid body formation and intense cytoplasmic vacuolization. CH and CD/Et demonstrated cytotoxic effects similar to that of amphotericin B in the anti-amastigote assays (SI of 2.16, 1.98 and 1.35, respectively). Triterpene amyrins were the main substances in CH and CD/Et extracts. In addition, 80 µg/mL of CD/Et reduced the number of intracellular amastigotes and the percentage of infected macrophages in 63% and 36%, respectively. CONCLUSION: The results presented here highlight C. sinensis as a promising source of antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Citrus sinensis/química , Leishmania/efeitos dos fármacos , Macrófagos/parasitologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Antiprotozoários/isolamento & purificação , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citrus sinensis/toxicidade , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Leishmania/crescimento & desenvolvimento , Leishmania/ultraestrutura , Camundongos , Testes de Sensibilidade Parasitária , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta/toxicidade , Plantas Medicinais , Células RAW 264.7 , Solventes/química
11.
Bioorg Med Chem ; 25(5): 1543-1555, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161253

RESUMO

Trypanosoma cruzi and Leishmania spp. are protozoa of the Trypanosomatidae family, being the etiological agents of two widespread parasitic diseases, Chagas disease and leishmaniasis, respectively. Both parasites are the focus of worldwide research with the aim to find effective and less toxic drugs than the few ones available so far, and for controlling the spread of the diseases. Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α- and ß-class were recently identified in these protozoans and several studies suggested that they could be new targets for drug development. Sulfonamide, thiol and hydroxamate inhibitors effectively inhibited the α-CA from T. cruzi (TcCA) and the ß-CA from L. donovani chagasi (LdccCA) in vitro, and some of them also showed in vivo efficacy in inhibiting the growth of the parasites in animal models of Chagas disease and leishmaniasis. As few therapeutic options are presently available for these orphan diseases, protozoan CA inhibition may represent a novel strategy to address this stringent health problem.


Assuntos
Antiprotozoários/farmacologia , Anidrases Carbônicas/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Anidrases Carbônicas/metabolismo , Leishmania/enzimologia , Leishmania/crescimento & desenvolvimento , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
12.
Artigo em Inglês | MEDLINE | ID: mdl-27274752

RESUMO

The aim of this study was to evaluate the activity of the EO and its major components of Ocimum basilicum var. Maria Bonita, a genetically improved cultivar, against the fluconazole sensitive and resistant strains of Candida albicans and Cryptococcus neoformans. Geraniol presented better results than the EO, with a low MIC (76 µg/mL against C. neoformans and 152 µg/mL against both Candida strains). The combination of EO, linalool, or geraniol with fluconazole enhanced their antifungal activity, especially against the resistant strain (MIC reduced to 156, 197, and 38 µg/mL, resp.). The ergosterol assay showed that subinhibitory concentrations of the substances were able to reduce the amount of sterol extracted. The substances tested were able to reduce the capsule size which suggests they have an important mechanism of action. Transmission electron microscopy demonstrated cell wall destruction of C. neoformans after treatment with subinhibitory concentrations. In C. albicans ultrastructure alterations such as irregularities in the membrane, presence of vesicles, and cell wall thickening were observed. The biofilm formation was inhibited in both C. albicans strains at MIC and twice MIC. These results provide further support for the use of O. basilicum EO and its major components as a potential source of antifungal agents.

13.
Pharmacogn Mag ; 12(45): 36-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019560

RESUMO

BACKGROUND: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. MATERIALS AND METHODS: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. RESULTS: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 µg/ml to 78.12 µg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 µg/ml). CONCLUSION: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY: Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure.

14.
Mediators Inflamm ; 2015: 835910, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26538837

RESUMO

Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease.


Assuntos
Produtos Biológicos/química , Leishmaniose/imunologia , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Comunicação Celular , Citocinas/metabolismo , Desenho de Fármacos , Humanos , Inflamação , Leishmania , Leucotrieno B4/química , Extratos Vegetais/química
15.
Biomed Res Int ; 2014: 694934, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045693

RESUMO

Promastigote forms of Leishmania amazonensis were treated with different concentrations of two fractions of Curcuma longa cortex rich in turmerones and their respective liposomal formulations in order to evaluate growth inhibition and the minimal inhibitory concentration (MIC). In addition, cellular alterations of treated promastigotes were investigated under transmission and scanning electron microscopies. LipoRHIC and LipoRHIWC presented lower MIC, 5.5 and 12.5 µg/mL, when compared to nonencapsulated fractions (125 and 250 µg/mL), respectively, and to ar-turmerone (50 µg/mL). Parasite growth inhibition was demonstrated to be dose-dependent. Important morphological changes as rounded body and presence of several roles on plasmatic membrane could be seen on L. amazonensis promastigotes after treatment with subinhibitory concentration (2.75 µg/mL) of the most active LipoRHIC. In that sense, the hexane fraction from the turmeric cortex of Curcuma longa incorporated in liposomal formulation (LipoRHIC) could represent good strategy for the development of new antileishmanial agent.


Assuntos
Cetonas/administração & dosagem , Leishmaniose/tratamento farmacológico , Lipossomos/administração & dosagem , Extratos Vegetais/administração & dosagem , Sesquiterpenos/administração & dosagem , Química Farmacêutica , Curcuma/química , Hexanos/química , Humanos , Cetonas/química , Leishmania/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/patogenicidade , Leishmaniose/parasitologia , Lipossomos/química , Extratos Vegetais/química , Sesquiterpenos/química
16.
Biomed Res Int ; 2014: 985171, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818162

RESUMO

Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 µg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Leishmania/citologia , Leishmania/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Mitocôndrias/ultraestrutura , Óxido Nítrico/biossíntese , Testes de Sensibilidade Parasitária
17.
BMC Complement Altern Med ; 13: 249, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088644

RESUMO

BACKGROUND: Visceral leishmaniasis is the most serious form of leishmaniasis and can be lethal if left untreated. Currently available treatments for these parasitic diseases are frequently associated to severe side effects. The leaves of Croton cajucara are used as an infusion in popular medicine to combat several diseases. Previous studies have demonstrated that the linalool-rich essential oil from C. cajucara (white sacaca) is extremely efficient against the tegumentary specie Leishmania amazonensis. In this study, we investigated the effects of the 7-hydroxycalamenene-rich essential oil from the leaves of C. cajucara (red sacaca) against Leishmania chagasi, as well as on the interaction of these parasites with host cells. METHODS: Promastigotes were treated with different concentrations of the essential oil for determination of its minimum inhibitory concentration (MIC). In addition, the effects of the essential oil on parasite ultrastructure were analyzed by transmission electron microscopy. To evaluate its efficacy against infected cells, mouse peritoneal macrophages infected with L. chagasi promastigotes were treated with the inhibitory and sub-inhibitory concentrations of the essential oil. RESULTS: The minimum inhibitory concentrations of the essential oil and its purified component 7-hydroxycalamenene against L. chagasi were 250 and 15.6 µg/mL, respectively. Transmission electron microscopy analysis revealed important nuclear and kinetoplastic alterations in L. chagasi promastigotes. Pre-treatment of macrophages and parasites with the essential oil reduced parasite/macrophage interaction by 52.8%, while it increased the production of nitric oxide by L. chagasi-infected macrophages by 80%. CONCLUSION: These results indicate that the 7-hydroxycalamenene-rich essential oil from C. cajucara is a promising source of leishmanicidal compounds.


Assuntos
Antiprotozoários/farmacologia , Croton/química , Leishmania/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/química , Células Cultivadas , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico/metabolismo , Óleos Voláteis/química , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Sesquiterpenos/química
18.
Res Microbiol ; 155(3): 136-43, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15059625

RESUMO

The available therapy for leishmaniasis, which affects 2 million people per annum, still causes serious side effects. The polyphenolic-rich extract from the husk fiber of Cocos nucifera Linn. (Palmae) presents antibacterial and antiviral activities, also inhibiting lymphocyte proliferation, as shown by our group in previous works. In the present study, the in vitro leishmanicidal effects of C. nucifera on Leishmania amazonensis were evaluated. The minimal inhibitory concentration of the polyphenolic-rich extract from C. nucifera to completely abrogate parasite growth was 10 microg/ml. Pretreatment of peritoneal mouse macrophages with 10 microg/ml of C. nucifera polyphenolic-rich extract reduced approximately 44% the association index between these macrophages and L. amazonensis promastigotes, with a concomitant increase of 182% in nitric oxide production by the infected macrophage in comparison to nontreated macrophages. These results provide new perspectives on drug development against leishmaniasis, since the extract of C. nucifera at 10 microg/ml is a strikingly potent leishmanicidal substance which inhibited the growth of both promastigote and amastigote developmental stages of L. amazonensis after 60 min, presenting no in vivo allergenic reactions or in vitro cytotoxic effects in mammalian systems.


Assuntos
Cocos/química , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Animais , Feminino , Flavonoides/farmacologia , Leishmania/crescimento & desenvolvimento , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Testes de Sensibilidade Microbiana , Óxido Nítrico/biossíntese , Fenóis/farmacologia , Polifenóis , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...