Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067991

RESUMO

The extinction efficiency of noble metal nanoparticles (NPs), namely gold (Au) and silver (Ag), are dependent on their size and surrounding dielectric. Exploiting the Localized Surface Plasmon Resonance (LSPR) phenomenon, the composition and structure of the NPs might be tailored to achieve a configuration that optimizes their response (sensitivity) to environmental changes. This can be done by preparing a bimetallic system, benefiting from the chemical stability of Au NPs and the higher scattering efficiency of Ag NPs. To enhance the LSPR sensing robustness, incorporating solid supports in the form of nanocomposite thin films is a suitable alternative. In this context, the NPs composed of gold (Au), silver (Ag), and their mixture in bimetallic Au-Ag NPs, were grown in a titanium dioxide (TiO2) matrix using reactive DC magnetron sputtering. Thermal treatment at different temperatures (up to 700 °C) tuned the LSPR response of the films and, consequently, their sensitivity. Notably, the bimetallic film with Au/Ag atomic ratio 1 exhibited the highest refractive index sensitivity (RIS), with a value of 181 nm/RIU, almost one order of magnitude higher than monometallic Au-TiO2. The nanostructural analysis revealed a wide NP size distribution of bimetallic NPs with an average size of 31 nm, covering about 20% of the overall surface area. These findings underscore the significant potential of bimetallic film systems, namely AuAg-TiO2, in LSPR sensing enhancement.

2.
Materials (Basel) ; 16(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068099

RESUMO

This work reports on the development of nanoplasmonic thin films consisting of Au, Ag, or Au-Ag nanoparticles dispersed in a TiO2 matrix and the optimization of the deposition parameters to tune their optical response. The thin films were produced by reactive DC magnetron sputtering of a Ti target with Au and/or Ag pellets placed on the erosion zone. The thicknesses (50 and 100 nm) of the films, the current density (75 and 100 A/m2) applied to the target (titanium), and the number of pellets placed on its surface were the deposition conditions that were used to tailor the optical (LSPR) response. The total noble metal content varied between 13 and 28 at.% for Au/TiO2 films, between 22 and 30 at.% for Ag/TiO2 films, and 8 to 29 at% for the Au-Ag/TiO2 systems with 1:1, 1:1.5, and 1:2 Au:Ag atomic ratios. After thermal annealing at 400 and 600 °C, LSPR bands were found for all films concerning the Au-TiO2 and Au-Ag/TiO2, while for Ag/TiO2, only for thin films with 28 and 30 at.% of Ag concentration. Refractive index sensitivity (RIS) was evaluated for Au and Au-Ag/TiO2 thin films. It was found that for bimetallic nanoparticles, the sensitivity can increase up to five times when compared to a monometallic nanoplasmonic system. Using Au-Ag/TiO2 thin films can decrease the cost of fabrication of LSPR transducers while improving their sensitivity.

4.
Sci Rep ; 13(1): 12303, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516768

RESUMO

Gutta-percha's lack of adhesion has been presented as a drawback to avoid gaps at sealer/gutta-percha interface. Plasma treatments have been scarcely assessed on gutta-percha surfaces as a method of enhancing adhesiveness. This study aimed to evaluate the effect of low-pressure Argon and Oxygen plasma atmospheres on conventional and bioceramic gutta-percha standardized smooth discs, assessing their roughness, surface free energy, chemical structure, and sealer wettability. A Low-Pressure Plasma Cleaner by Diener Electronic (Zepto Model) was used. Different gases (Argon or Oxygen), powers (25 W, or 50 W), and exposure times (30 s, 60 s, 120 s, or 180 s) were tested in control and experimental groups. Kruskal-Wallis and Student's t-test were used in data analysis. Statistically significant differences were detected when P < 0.05. Both gases showed different behaviors according to the parameters selected. Even though chemical changes were detected, the basic molecular structure was maintained. Argon or Oxygen plasma treatments favoured the wetting of conventional and bioceramic gutta-perchas by Endoresin and AH Plus Bioceramic sealers (P < 0.001). Overall, the functionalization of gutta-percha surfaces with Argon or Oxygen plasma treatments can increase roughness, surface free energy and wettability, which might improve its adhesive properties when compared to non-treated gutta-percha.


Assuntos
Gases , Guta-Percha , Humanos , Adesividade , Argônio , Oxigênio
5.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354460

RESUMO

Currently, there is an increasing need to develop highly sensitive plasmonic sensors able to provide good biocompatibility, flexibility, and optical stability to detect low levels of analytes in biological media. In this study, gold nanoparticles (Au NPs) were dispersed into chitosan membranes by spin coating. It has been demonstrated that these membranes are particularly stable and can be successfully employed as versatile plasmonic platforms for molecular sensing. The optical response of the chitosan/Au NPs interfaces and their capability to sense the medium's refractive index (RI) changes, either in a liquid or gas media, were investigated by high-resolution localized surface plasmon resonance (HR-LSPR) spectroscopy, as a proof of concept for biosensing applications. The results revealed that the lowest polymer concentration (chitosan (0.5%)/Au-NPs membrane) presented the most suitable plasmonic response. An LSPR band redshift was observed as the RI of the surrounding media was incremented, resulting in a sensitivity value of 28 ± 1 nm/RIU. Furthermore, the plasmonic membrane showed an outstanding performance when tested in gaseous atmospheres, being capable of distinguishing inert gases with only a 10-5 RI unit difference. The potential of chitosan/Au-NPs membranes was confirmed for application in LSPR-based sensing applications, despite the fact that further materials optimization should be performed to enhance sensitivity.


Assuntos
Quitosana , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Refratometria
6.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146392

RESUMO

In this study, thin films composed of gold nanoparticles embedded in a copper oxide matrix (Au:CuO), manifesting Localized Surface Plasmon Resonance (LSPR) behavior, were produced by reactive DC magnetron sputtering and post-deposition in-air annealing. The effect of low-power Ar plasma etching on the surface properties of the plasmonic thin films was studied, envisaging its optimization as gas sensors. Thus, this work pretends to attain the maximum sensing response of the thin film system and to demonstrate its potential as a gas sensor. The results show that as Ar plasma treatment time increases, the host CuO matrix is etched while Au nanoparticles are uncovered, which leads to an enhancement of the sensitivity until a certain limit. Above such a time limit for plasma treatment, the CuO bonds are broken, and oxygen is removed from the film's surface, resulting in a decrease in the gas sensing capabilities. Hence, the importance of the host matrix for the design of the LSPR sensor is also demonstrated. CuO not only provides stability and protection to the Au NPs but also promotes interactions between the thin film's surface and the tested gases, thereby improving the nanocomposite film's sensitivity. The optimized sensor sensitivity was estimated at 849 nm/RIU, which demonstrates that the Au-CuO thin films have the potential to be used as an LSPR platform for gas sensors.

7.
Nanomaterials (Basel) ; 12(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35564234

RESUMO

Optical biosensors based on localized surface plasmon resonance (LSPR) are the future of label-free detection methods. This work reports the development of plasmonic thin films, containing Au nanoparticles dispersed in a TiO2 matrix, as platforms for LSPR biosensors. Post-deposition treatments were employed, namely annealing at 400 °C, to develop an LSPR band, and Ar plasma, to improve the sensitivity of the Au-TiO2 thin film. Streptavidin and biotin conjugated with horseradish peroxidase (HRP) were chosen as the model receptor-analyte, to prove the efficiency of the immobilization method and to demonstrate the potential of the LSPR-based biosensor. The Au-TiO2 thin films were activated with O2 plasma, to promote the streptavidin immobilization as a biorecognition element, by increasing the surface hydrophilicity (contact angle drop to 7°). The interaction between biotin and the immobilized streptavidin was confirmed by the detection of HRP activity (average absorbance 1.9 ± 0.6), following a protocol based on enzyme-linked immunosorbent assay (ELISA). Furthermore, an LSPR wavelength shift was detectable (0.8 ± 0.1 nm), resulting from a plasmonic thin-film platform with a refractive index sensitivity estimated to be 33 nm/RIU. The detection of the analyte using these two different methods proves that the functionalization protocol was successful and the Au-TiO2 thin films have the potential to be used as an LSPR platform for label-free biosensors.

8.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214278

RESUMO

This study aimed at introducing thin films exhibiting the localized surface plasmon resonance (LSPR) phenomenon with a reversible optical response to repeated uniaxial strain. The sensing platform was prepared by growing gold (Au) nanoparticles throughout a titanium dioxide dielectric matrix. The thin films were deposited on transparent polymeric substrates, using reactive magnetron sputtering, followed by a low temperature thermal treatment to grow the nanoparticles. The microstructural characterization of the thin films' surface revealed Au nanoparticle with an average size of 15.9 nm, an aspect ratio of 1.29 and an average nearest neighbor nanoparticle at 16.3 nm distance. The plasmonic response of the flexible nanoplasmonic transducers was characterized with custom-made mechanical testing equipment using simultaneous optical transmittance measurements. The higher sensitivity that was obtained at a maximum strain of 6.7%, reached the values of 420 nm/ε and 110 pp/ε when measured at the wavelength or transmittance coordinates of the transmittance-LSPR band minimum, respectively. The higher transmittance gauge factor of 4.5 was obtained for a strain of 10.1%. Optical modelling, using discrete dipole approximation, seems to correlate the optical response of the strained thin film sensor to a reduction in the refractive index of the matrix surrounding the gold nanoparticles when uniaxial strain is applied.

9.
Materials (Basel) ; 13(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075197

RESUMO

Nanoplasmonic thin films, composed of noble metal nanoparticles (gold) embedded in an oxide matrix, have been a subject of considerable interest for Localized Surface Plasmon Resonance (LSPR) sensing. Ethanol is one of the promising materials for fuel cells, and there is an urgent need of a new generation of safe optical sensors for its detection. In this work, we propose the development of sensitive plasmonic platforms to detect molecular analytes (ethanol) through changes of the LSPR band. The thin films were deposited by sputtering followed by a heat treatment to promote the growth of the gold nanoparticles. To enhance the sensitivity of the thin films and the signal-to-noise ratio (SNR) of the transmittance-LSPR sensing system, physical plasma etching was used, resulting in a six-fold increase of the exposed gold nanoparticle area. The transmittance signal at the LSPR peak position increased nine-fold after plasma treatment, and the quality of the signal increased six times (SNR up to 16.5). The optimized thin films seem to be promising candidates to be used for ethanol vapor detection. This conclusion is based not only on the current sensitivity response but also on its enhancement resulting from the optimization routines of thin films' architectures, which are still under investigation.

10.
Mater Sci Eng C Mater Biol Appl ; 100: 424-432, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948078

RESUMO

This work reports on the development of a label-free immunosensor technology, based on nanoplasmonic Au-TiO2 thin films. The Au-TiO2 thin films were prepared by cost-effective reactive DC magnetron sputtering, followed by a thermal annealing procedure. The latter promoted the growth of the Au nanoparticles throughout the TiO2 matrix and induced some morphological changes, which are the base for the immunosensor device functionality. A posterior plasma etching treatment was required to partially expose the nanoparticles to the biological environment. It gave rise to a 6-fold increase of the total area of gold exposed, allowing further possibilities for the sensor sensitivity enhancement. Experimental results demonstrated the successful functionalization of the films' surface with antibodies, with the immobilization occurring preferentially in the exposed nanoparticles and negligibly on the TiO2 matrix. Antibody adsorption surface coverage studies revealed antibody low affinity to the film's surface. Nevertheless, immunoassay development experiments showed a strong and active immobilized antibody monolayer at an optimized antibody concentration. This allowed a 236 signal-to-noise-ratio in a confocal microscope, using mouse IgG and 100 ng/ml of Fab-specific anti-mouse IgG-FITC conjugated. Label-free detection of the optimized antibody monolayer on Au-TiO2 thin films was also tested, revealing an expected redshift in the LSPR band, which demonstrates the suitability for the development of cost-effective, label-free LSPR based immunosensor devices.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Imunoensaio/métodos , Coloração e Rotulagem , Titânio/química , Adsorção , Animais , Anticorpos/metabolismo , Proteínas Imobilizadas/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Propriedades de Superfície
11.
Nanotechnology ; 30(22): 225701, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30754029

RESUMO

In this work, a versatile method is proposed to increase the sensitivity of optical sensors based on the localized surface plasmon resonance (LSPR) phenomenon. It combines a physical deposition method with the oblique angle deposition technique, allowing the preparation of plasmonic thin films with tailored porosity. Thin films of Au-TiO2 were deposited by reactive magnetron sputtering in a 3D nanostructure (zigzag growth), at different incidence angles (0° ≤ α ≤ 80°), followed by in-air thermal annealing at 400 °C to induce the growth of the Au nanoparticles. The roughness and surface porosity suffered a gradual increment by increasing the incidence angle. The resulting porous zigzag nanostructures that were obtained also decreased the principal refractive indexes (RIs) of the matrix and favoured the diffusion of Au through grain boundaries, originating broader nanoparticle size distributions. The transmittance minimum of the LSPR band appeared at around 600 nm, leading to a red-shift to about 626 nm for the highest incidence angle α = 80°, due to the presence of larger (scattering) nanoparticles. It is demonstrated that zigzag nanostructures can enhance adsorption sites for LSPR sensing by tailoring the porosity of the thin films. Atmosphere controlled transmittance-LSPR measurements showed that the RI sensitivity of the films is improved for higher incidence angles.

12.
ACS Appl Mater Interfaces ; 10(49): 42882-42890, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457319

RESUMO

Plasmonic Au nanoparticles (AuNPs) embedded into a TiO2 dielectric matrix were analyzed by combining two-dimensional and three-dimensional electron microscopy techniques. The preparation method was reactive magnetron sputtering, followed by thermal annealing treatments at 400 and 600 °C. The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior. High-angle annular dark field-scanning transmission electron microscopy results showed the presence of small-sized AuNPs (quantum size regime) in the as-deposited Au-TiO2 film, resulting in a negligible LSPR response. The in-vacuum thermal annealing at 400 °C induced the formation of intermediate-sized nanoparticles (NPs), in the range of 10-40 nm, which led to the appearance of a well-defined LSPR band, positioned at 636 nm. Electron tomography revealed that most of the NPs are small-sized and are embedded into the TiO2 matrix, whereas the larger NPs are located at the surface. Annealing at 600 °C promotes a bimodal size distribution with intermediate-sized NPs embedded in the matrix and big-sized NPs, up to 100 nm, appearing at the surface. The latter are responsible for a broadening and a redshift, to 645 nm, in the LSPR band because of increase of scattering-to-absorption ratio. Beyond differentiating and quantifying the surface and embedded NPs, electron tomography also provided the identification of "hot-spots". The presence of NPs at the surface, individual or in dimers, permits adsorption sites for LSPR sensing and for surface-enhanced spectroscopies, such as surface-enhanced Raman scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...