Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Phycol ; 36(2): 697-711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765689

RESUMO

Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy. Lyases are the first of several enzymes that are involved in saccharifying the polysaccharide and several ulvan lyases have been structurally and biochemically characterised to enable their effective use in the valorisation processes. This study investigates the whole genome of Vibrio sp. FNV38, an ulvan metabolising organism and biochemical characteristics of a PL24 ulvan lyase that it possesses. The genome of Vibrio sp. FNV38 has a diverse CAZy profile with several genes involved in the metabolism of ulvan, cellulose, agar, and alginate. The enzyme exhibits optimal activity at pH 8.5 in 100 mM Tris-HCl buffer and 30 °C. However, its thermal stability is poor with significant loss of activity after 2 h of incubation at temperatures above 25 °C. Breakdown product analysis reveals that the enzyme depolymerised the polysaccharide predominantly to disaccharides and tetrasaccharides. Supplementary Information: The online version contains supplementary material available at 10.1007/s10811-023-03136-3.

3.
Front Immunol ; 12: 745315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671358

RESUMO

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.


Assuntos
Cabras/imunologia , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Virulência/imunologia , Animais , Perfilação da Expressão Gênica , Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Proteômica
4.
Infect Genet Evol ; 87: 104636, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217546

RESUMO

Fighting trypanosomiasis with an anti-trypanosome vaccine is ineffective, the parasite being protected by a Variable Surface Glycoprotein (VSG) whose structure is modified at each peak of parasitaemia, which allows it to escape the host's immune defenses. However, the host immunization against an essential factor for the survival of the parasite or the expression of its pathogenicity could achieve the same objective. Here we present the results of mouse immunization against the Translationally Controlled Tumor Protein (TCTP), a protein present in the Trypanosoma brucei gambiense (Tbg) secretome, the parasite responsible for human trypanosomiasis. Mice immunization was followed by infection with Tbg parasites. The production of IgG, IgG1 and IgG2a begun after the second TCTP injection and was dose-dependant, the maximum level of anti-TCTP antibodies remained stable up to 4 days post-infection and then decreased. Regarding cytokines (IL-2, 4, 6, 10, INFγ, TNFα), the most striking result was their total suppression after immunization with the highest TCTP dose. Compared to the control group, the immunized mice displayed a reduced first peak of parasitaemia, a 100% increase in the time to onset of the second peak, and an increased time of mice survival. The effect of immunization was only transient but demonstrated the likely important role that TCTP plays in host-parasite interactions and that some key parasite proteins could reduce infection impact.


Assuntos
Biomarcadores Tumorais/genética , Citocinas/biossíntese , Imunoglobulinas/biossíntese , Camundongos/parasitologia , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Citocinas/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunoglobulinas/genética , Proteína Tumoral 1 Controlada por Tradução
5.
Virus Res ; 286: 198035, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461190

RESUMO

Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor. However, only virulent strains successfully completed their replication cycle while the vaccine strains did not. Since 10T1/2 cells are interferon-producing cells, the role of the type I interferon (type I IFN) response on this differentiated replication between virulent and attenuated strains was verified by stimulation or repression. Modulation of the type I IFN response did not improve the replication of the vaccine strains, indicating that other cell factor(s) not yet established may hinder the replication of attenuated PPRV in 10T1/2. This 10T1/2 cell line can be proposed as a new in vitro tool for PPRV-host interaction and virulence studies.


Assuntos
Linhagem Celular , Interferon Tipo I/imunologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Animais , Chlorocebus aethiops , Imunofluorescência , Cabras , Camundongos , Vírus da Peste dos Pequenos Ruminantes/genética , Células Vero , Virulência , Replicação Viral
6.
Emerg Infect Dis ; 26(5): 1041-1044, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32310061

RESUMO

We conducted a serologic survey for Crimean-Congo hemorrhagic fever virus antibodies in livestock (cattle, sheep, and goats; N = 3,890) on Corsica (island of France) during 2014-2016. Overall, 9.1% of animals were seropositive, suggesting this virus circulates on Corsica. However, virus identification is needed to confirm these results.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Anticorpos Antivirais , Bovinos , França/epidemiologia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Gado , Ovinos
7.
Front Immunol ; 9: 778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731753

RESUMO

Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.


Assuntos
Arginina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Tripanossomíase/metabolismo , Animais , Humanos
8.
Cytometry A ; 91(9): 901-907, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28700121

RESUMO

Quantifying cytokines is extremely important in studies of host-pathogen interactions. Multiplex assays are commercially available but only for human and mouse cytokines. Here a method for the simultaneous quantification of five important bovine cytokines IFNγ, IL-4, IL-10, IL-12, and TNFα in cell culture supernatants, using flow cytometry was reported. Functional beads from BD Biosciences expressing specific APC intensity were used. Commercially available antibodies against bovine cytokines were covalently coupled to beads as capture antibodies. Fixed recombinant cytokines were revealed with a second monoclonal antibody coupled with biotin, then revealed with streptavidin-PE. This complex was analyzed using a standard flow cytometer. Experiments were performed to check no cross reactions had occurred. The limits of detection ranged between 0.08 and 0.4 ng/ml depending on the cytokine, and the linearity between the lower and higher limits was remarkable (R2 > 99.8%). Finally, native cytokines from cell culture supernatants were tested. Results were compared using the standard ELISA test and showed that concentrations of native cytokine in cell culture supernatants were comparable with the two methods, with a wider dynamic range using beads and flow cytometry than with ELISA assays. Bovine IFNγ, IL-4, IL-10, IL-12, and TNFα in culture supernatants can be now simultaneously detected in a single assay, using a standard flow cytometer for both basic and high-throughput analyses. © 2017 International Society for Advancement of Cytometry.


Assuntos
Bioensaio/métodos , Citocinas/química , Animais , Anticorpos Monoclonais/química , Bovinos , Reações Cruzadas/imunologia , Citometria de Fluxo/métodos , Interferon gama/química , Interleucina-10/química , Interleucina-12/química , Interleucina-4/química , Fator de Necrose Tumoral alfa/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-29354598

RESUMO

The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases.


Assuntos
Fatores Imunológicos/metabolismo , Ixodidae , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Antígenos CD/análise , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Antígenos de Histocompatibilidade Classe II/análise , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Óxido Nítrico/análise
10.
J Biotechnol ; 236: 35-44, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27497759

RESUMO

Fluorescence expression tools for stable and innocuous whole mycoplasma cell labelling have been developed. A Tn4001-derivative mini-transposon affording unmarked, stable mutagenesis in mycoplasmas was modified to allow the constitutive, high-level expression of mCherry, mKO2 and mNeonGreen. These tools were used to introduce the respective fluorescent proteins as chromosomal tags in the phylogenetically distant species Mycoplasma mycoides subsp. mycoides and Mycoplasma bovis. The production, selection and characterisation of fluorescent clones were straightforward and resulted in the unprecedented observation of red and green fluorescent mycoplasma colonies in the two species, with no apparent cytotoxicity. Equivalent fluorescence expression levels were quantified by flow cytometry in both species, suggesting that these tools can be broadly applied in mycoplasmas. A macrophage infection assay was performed to assess the usefulness of mNeonGreen-expressing strains for monitoring mycoplasma infections, and notably cell invasion. The presence of fluorescent mycoplasmas inside live phagocytic cells was detected and quantified by flow cytometry and corroborated by confocal microscopy, which allowed the identification of individual mycoplasmas in the cytoplasm of infected cells. The fluorescence expression tools developed in this study are suitable for host-pathogen interaction studies and offer innumerable perspectives for the functional analysis of mycoplasmas both in vitro and in vivo.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Imagem Molecular/métodos , Mycoplasma/química , Mycoplasma/citologia , Espectrometria de Fluorescência/métodos , Animais , Bovinos , Células Cultivadas , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mycoplasma/metabolismo , Mycoplasma/patogenicidade , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/fisiopatologia , Fagócitos/citologia , Fagócitos/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
11.
PLoS One ; 11(2): e0147869, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828597

RESUMO

African swine fever is a haemorrhagic disease in pig production that can have disastrous financial consequences for farming. No vaccines are currently available and animal slaughtering or area zoning to restrict risk-related movements are the only effective measures to prevent the spread of the disease. Ornithodoros soft ticks are known to transmit the African swine fever virus (ASFV) to pigs in farms, following the natural epidemiologic cycle of the virus. Tick saliva has been shown to modulate the host physiological and immunological responses during feeding on skin, thus affecting viral infection. To better understand the interaction between soft tick, ASFV and pig at the bite location and the possible influence of tick saliva on pig infection by ASFV, salivary gland extract (SGE) of Ornithodoros porcinus, co-inoculated or not with ASFV, was used for intradermal auricular inoculation. Our results showed that, after the virus triggered the disease, pigs inoculated with virus and SGE presented greater hyperthermia than pigs inoculated with virus alone. The density of Langerhans cells was modulated at the tick bite or inoculation site, either through recruitment by ASFV or inhibition by SGE. Additionally, SGE and virus induced macrophage recruitment each. This effect was enhanced when they were co-inoculated. Finally, the co-inoculation of SGE and virus delayed the early local spread of virus to the first lymph node on the inoculation side. This study has shown that the effect of SGE was powerful enough to be quantified in pig both on the systemic and local immune response. We believe this model should be developed with infected tick and could improve knowledge of both tick vector competence and tick saliva immunomodulation.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Glândulas Salivares/química , Sus scrofa/imunologia , Sus scrofa/virologia , Carrapatos/química , Extratos de Tecidos/imunologia , Febre Suína Africana/fisiopatologia , Vírus da Febre Suína Africana/imunologia , Animais , Biópsia , Temperatura Corporal , Feminino , Imunidade , Células de Langerhans/patologia , Contagem de Leucócitos , Linfonodos/patologia , Linfonodos/virologia , Masculino , Pele/patologia , Suínos , Viremia/sangue
12.
Vet Res ; 46: 122, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490663

RESUMO

In this study we explored the immunomodulatory properties of highly purified free galactan, the soluble exopolysaccharide secreted by Mycoplasma mycoides subsp. mycoides (Mmm). Galactan was shown to bind to TLR2 but not TLR4 using HEK293 reporter cells and to induce the production of the anti-inflammatory cytokine IL-10 in bovine macrophages, whereas low IL-12p40 and no TNF-α, both pro-inflammatory cytokines, were induced in these cells. In addition, pre-treatment of macrophages with galactan substantially reduced lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines TNF- and IL-12p40 while increasing LPS-induced secretion of immunosuppressive IL-10. Also, galactan did not activate naïve lymphocytes and induced only low production of the Th1 cytokine IFN-γ in Mmm-experienced lymphocytes. Finally, galactan triggered weak recall proliferation of CD4+ T lymphocytes from contagious bovine pleuropneumonia-infected animals despite having a positive effect on the expression of co-stimulatory molecules on macrophages. All together, these results suggest that galactan possesses anti-inflammatory properties and potentially provides Mmm with a mechanism to evade host innate and adaptive cell-mediated immune responses.


Assuntos
Imunidade Adaptativa , Doenças dos Bovinos/microbiologia , Galactanos/metabolismo , Imunidade Inata , Macrófagos/imunologia , Mycoplasma mycoides/fisiologia , Pleuropneumonia Contagiosa/microbiologia , Animais , Bovinos , Células HEK293 , Humanos , Interleucina-10/metabolismo , Polissacarídeos Bacterianos
13.
PLoS One ; 10(10): e0139678, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431338

RESUMO

Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides (Mmm), is a severe respiratory disease of cattle responsible for major economic losses in sub-Saharan Africa. Disease control relies mainly on the use of empirically attenuated vaccines that provide limited protection. Thus, understanding the virulence mechanisms used by Mmm as well as the role of the host immune system in disease development, persistence, and control is a prerequisite for the development of new, rationally designed control strategies. The aim of this study was to assess the use of whole blood transcriptome analysis to study cattle-Mmm interactions, starting by the characterization of the bovine response to Mmm infection during the acute form of the disease. For that purpose, we compared the transcriptome profile of whole blood from six cattle, before challenge by contact with Mmm-infected animals and at the appearance of first clinical signs, using a bovine microarray. Functional analysis revealed that 680 annotated genes were differentially expressed, with an overwhelming majority of down-regulated genes characterizing an immunosuppression. The main bio-functions affected were "organismal survival", "cellular development, morphology and functions" and "cell-to cell signaling and interactions". These affected functions were consistent with the results of previous in vitro immunological studies. However, microarray and qPCR validation results did not highlight pro-inflammatory molecules (such as TNFα, TLR2, IL-12B and IL-6), whereas inflammation is one of the most characteristic traits of acute CBPP. This global gene expression pattern may be considered as the result, in blood, of the local pulmonary response and the systemic events occurring during acute CBPP. Nevertheless, to understand the immune events occurring during disease, detailed analyses on the different immune cell subpopulations, either in vivo, at the local site, or in vitro, will be required. Whole blood transcriptome analysis remains an interesting approach for the identification of bio-signatures correlating to recovery and protection, which should facilitate the evaluation and validation of novel vaccine formulations.


Assuntos
Doenças dos Bovinos/genética , Terapia de Imunossupressão , Inflamação/veterinária , Mycoplasma mycoides/genética , Transcriptoma , Animais , Bovinos , Doenças dos Bovinos/imunologia , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia
14.
Vet Res ; 46: 117, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412247

RESUMO

Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses. Ticks feed on their host for relatively long periods; thus, mechanisms counteracting the inflammation-driven recruitment and activation of innate effector cells at the bite site, are an effective strategy to escape the immune response. Here, we developed an original in vitro model to evaluate and to characterize the immunomodulatory effects of tick saliva that prevent the establishment of a local inflammatory immune response. This model mimics the tick bite and enables the assessment of the effect of saliva on the inflammatory-associated dynamic recruitment of cells from the mononuclear phagocyte system. Using this model, we were able to recapitulate the dual effect of tick saliva on the mobilization of inflammatory monocyte-derived cells, i.e. (i) impaired recruitment of monocytes from the blood to the bite wound; and (ii) poor mobilization of monocyte-derived cells from the skin to the draining lymph node. This simple tool reconstitutes the effect of tick saliva in vivo, which we characterized in the mouse, and should enable the identification of important factors facilitating pathogen infection. Furthermore, this model may be applied to the characterization of any pathogen-derived immunosuppressive molecule affecting the establishment of the inflammatory immune response.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Ixodidae/imunologia , Sistema Fagocitário Mononuclear/parasitologia , Animais , Feminino , Tolerância Imunológica , Ixodidae/química , Camundongos , Camundongos Endogâmicos C57BL , Saliva/química , Saliva/imunologia
15.
BMC Vet Res ; 11: 65, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25889787

RESUMO

BACKGROUND: Today, when more than 60% of animal diseases are zoonotic, understanding their origin and development and identifying protective immune responses in ruminants are major challenges. Robust, efficient and cost-effective tools are preconditions to solve these challenges. Cytokines play a key role in the main mechanisms by which the immune system is balanced in response to infectious pathogens. The cytokine balance has thus become the focus of research to characterize immune response in ruminants. Currently, SYBR Green reverse transcriptase quantitative PCR (RT-qPCR) is the most widely method used to investigate cytokine gene expression in ruminants, but the conditions in which the many assays are carried out vary considerably and need to be properly evaluated. Accordingly, the quantification of gene expression by RT-qPCR requires normalization by multiple reference genes. The objective of the present study was thus to develop an RT-qPCR assay to simultaneously quantify the expression of several cytokines and reference genes in three ruminant species. In this paper, we detail each stage of the experimental protocol, check validation parameters and report assay performances, following MIQE guidelines. RESULTS: Ten novel primer sets were designed to quantify five cytokine genes (IL-4, IL-10, IL-12B, IFN-γ and TNF-α) and five reference genes (ACTB, GAPDH, H3F3A, PPIA and YWHAZ) in cattle, sheep, and goats. All the primer sets were designed to span exon-exon boundaries and use the same hybridization temperature. Each stage of the RT-qPCR method was detailed; their specificity and efficiency checked, proved and are reported here, demonstrating the reproducibility of our method, which is capable of detecting low levels of cytokine mRNA up to one copy whatever the species. Finally, we checked the stability of candidate reference gene expression, performed absolute quantification of cytokine and reference gene mRNA in whole blood samples and relative expression of cytokine mRNA in stimulated PBMC samples. CONCLUSIONS: We have developed a novel RT-qPCR assay for the simultaneous relative quantification of five major cytokines in cattle, sheep and goats, and their accurate normalization by five reference genes. This accurate and easily reproducible tool can be used to investigate ruminant immune responses and is widely accessible to the veterinary research community.


Assuntos
Interferon gama/sangue , Interleucina-10/sangue , Subunidade p40 da Interleucina-12/sangue , Interleucina-4/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Fator de Necrose Tumoral alfa/sangue , Animais , Benzotiazóis , Bovinos/sangue , Diaminas , Corantes Fluorescentes/metabolismo , Cabras/sangue , Compostos Orgânicos/metabolismo , Quinolinas , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Ovinos/sangue
16.
Vaccine ; 33(1): 141-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25444801

RESUMO

Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP.


Assuntos
Adenovírus Humanos/genética , Vacinas Bacterianas/imunologia , Portadores de Fármacos , Vetores Genéticos , Lipoproteína(a)/imunologia , Mycoplasma mycoides/imunologia , Pleuropneumonia Contagiosa/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Lipoproteína(a)/biossíntese , Lipoproteína(a)/genética , Camundongos Endogâmicos BALB C , Mycoplasma mycoides/genética
17.
J Biomed Biotechnol ; 2010: 274346, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20414351

RESUMO

This study explored a novel system combining plant-based production and the elastin-like peptide (ELP) fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP) were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT) method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Elastina/genética , Mycobacterium tuberculosis/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Western Blotting , Bovinos , Processos de Crescimento Celular/genética , Sobrevivência Celular/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hipersensibilidade Tardia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/genética , Folhas de Planta/química , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Baço/citologia , Suínos , Nicotiana/genética , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
18.
Comp Immunol Microbiol Infect Dis ; 33(4): 279-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19187963

RESUMO

Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Regulação Bacteriana da Expressão Gênica/imunologia , Lipoproteínas/metabolismo , Mycoplasma mycoides/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Proliferação de Células , Lipoproteínas/genética , Linfonodos/citologia , Pleuropneumonia Contagiosa/imunologia , Pleuropneumonia Contagiosa/microbiologia
19.
Vet Res ; 39(1): 8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18073095

RESUMO

A better understanding of protective immune memory against contagious bovine pleuropneumonia (CBPP) is needed in order to facilitate the development of safer vaccines based on selected components of the pathogen. For this purpose, cells collected from lymph nodes draining the lungs of Mycoplasma mycoides subsp. mycoides small colony biotype (MmmSC)-infected cattle were stimulated with the pathogen in vitro and evaluated concurrently for proliferation (CFSE based method), expression of activation, memory markers and cytokine production. Direct evidence is presented for a major contribution of CD4+ T cells to the vigorous proliferative and T1 biased cytokine recall responses observed in cattle that have recovered from infection but not in animals developing the acute form of the disease. Two different phenotypes of MmmSC-specific memory CD4 were observed based on CD62L expression and proliferative capacities. Furthermore, recall proliferation of B cells also occurred but was strictly dependent on the presence of CD4. The information provided in this study will facilitate the search for MmmSC antigens that have potential for the development of subunit vaccines against CBPP.


Assuntos
Doenças dos Bovinos/prevenção & controle , Imunidade Celular , Mycoplasma mycoides/imunologia , Pleuropneumonia Contagiosa/prevenção & controle , Vacinação/veterinária , Animais , Técnicas de Tipagem Bacteriana/veterinária , Bovinos , Citocinas/biossíntese , Feminino , Citometria de Fluxo/veterinária , Linfonodos/citologia , Linfonodos/imunologia , Masculino
20.
Vet Res ; 37(5): 733-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16820137

RESUMO

The purpose of the present study was to characterize the Mycoplasma mycoides subsp. mycoides small colony (MmmSC)-specific humoral immune response at both systemic and local levels in cattle experimentally infected with MmmSC, for a better understanding of the protective immune mechanisms against the disease. The disease was experimentally reproduced in zebu cattle by contact. Clinical signs, postmortem and microbiological findings were used to evaluate the degree of infection. Serum and bronchial lavage fluids (BAL) were collected sequentially, before contact and over a period of one year after contact. The kinetics of the different antibody isotypes to MmmSC was established. Based on the severity of the clinical signs, post mortem and microbiological findings, the animals were classified into three groups as acute form with deaths, sub-acute to chronic form and resistant animals. Seroconversion was never observed for the control animals throughout the duration of the experiment, nor for those classified as resistant. Instead, seroconversion was measured for all other cattle either with acute or sub-acute to chronic forms of the disease. For these animals, IgM, IgG1, IgG2 and IgA responses were detected in the serum and BAL samples. The kinetics of the IgM, IgG1 and IgG2 responses was nearly similar between both groups of animals. No evident correlation could thus be established between the levels of these isotypes and the severity of the disease. Levels of IgA were high in both BAL and serum samples of animals with sub-acute to chronic forms of the disease, and tended to persist throughout the entire experimental period. In contrast, animals with acute forms of the disease showed low levels of IgA in their BAL samples with none or very transient but low levels of IgA in the serum samples. Our results thus demonstrated that IgA is produced locally in MmmSC experimentally infected cattle by contact and may play a role in protection against contagious bovine pleuropneumonia.


Assuntos
Anticorpos Antibacterianos/biossíntese , Imunoglobulina A/biossíntese , Mycoplasma mycoides/imunologia , Pleuropneumonia Contagiosa/imunologia , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Bovinos , Imunoglobulina A/análise , Imunoglobulina A/sangue , Pleuropneumonia Contagiosa/microbiologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...