Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(10): 2428-2442, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076152

RESUMO

Invasions by fungal plant pathogens pose a significant threat to the health of agricultural ecosystems. Despite limited standing genetic variation, many invasive fungal species can adapt and spread rapidly, resulting in significant losses to crop yields. Here, we report on the population genomics of Colletotrichum truncatum, a polyphagous pathogen that can infect more than 460 plant species, and an invasive pathogen of soybean in Brazil. We study the whole-genome sequences of 18 isolates representing 10 fields from two major regions of soybean production. We show that Brazilian C. truncatum is subdivided into three phylogenetically distinct lineages that exchange genetic variation through hybridization. Introgression affects 2%-30% of the nucleotides of genomes and varies widely between the lineages. We find that introgressed regions comprise secreted protein-encoding genes, suggesting possible co-evolutionary targets for selection in those regions. We highlight the inherent vulnerability of genetically uniform crops in the agro-ecological environment, particularly when faced with pathogens that can take full advantage of the opportunities offered by an increasingly globalized world. Finally, we discuss "the means, motive and opportunity" of fungal pathogens and how they can become invasive species of crops. We call for more population genomic studies because such analyses can help identify geographical areas and pathogens that pose a risk, thereby helping to inform control strategies to better protect crops in the future.


Assuntos
Ecossistema , Introgressão Genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Evolução Biológica , Glycine max/genética , Glycine max/microbiologia
2.
Sci Rep ; 12(1): 8778, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610293

RESUMO

Allele-specific expression (ASE) represents differences in the magnitude of expression between alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for mixed-ploid organisms. The hierarchical Beta-Binomial model was used to test if allele expression followed the expectation based on genomic allele dosage. The highest frequencies of ASE occurred in sugarcane hybrids, suggesting a possible influence of interspecific hybridization in these genotypes. For all accessions, genes showing ASE (ASEGs) were less frequent than those with balanced allelic expression. These genes were related to a broad range of processes, mostly associated with general metabolism, organelles, responses to stress and responses to stimuli. In addition, the frequency of ASEGs in high-level functional terms was similar among the genotypes, with a few genes associated with more specific biological processes. We hypothesize that ASE in Saccharum is largely a genotype-specific phenomenon, as a large number of ASEGs were exclusive to individual accessions.


Assuntos
Saccharum , Alelos , Viés , Polimorfismo de Nucleotídeo Único , Poliploidia , Saccharum/genética
3.
GigaByte ; 2021: gigabyte24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36824328

RESUMO

Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...