Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(2): e202301407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116922

RESUMO

Melipona subnitida (Ducke, 1911), a species of stingless bee, popularly known as Jandaíra, has a wide distribution in the Brazilian Northeast region, being an important pollinator of the Caatinga biome. This bee produces products such as honey, geopropolis, pollen (saburá) and wax that are traditionally used for therapeutic purposes and some studies report the biological properties, as well as its chemical composition. This review aimed to select, analyze and gather data published in the literature focusing on the chemical profile and bioactivities described for M. subnitida products. Data collection was carried out through the Capes Journal Portal platform, using the following databases: Web of Science, Scopus, and PubMed. Original articles published in English and Portuguese were included, with no time limitation. The chemical composition of M. subnitida products has been investigated through chromatographic analysis, demonstrating the presence of a variety of phenolic compounds, such as flavonoids and phenylpropanoids, among other classes of secondary metabolites. These products also have several biological activities, including antioxidant, healing, antinociceptive, anti-inflammatory, antidepressant, antidyslipidemic, antiobesity, antifungal, antibacterial and prebiotic. Among the biological activities reported, the antioxidant activity was the most investigated. These data show that products derived from the stingless bee M. subnitida have promising bioactive compounds. This review provides useful information about the bioactivities and chemical profile of Melipona subnitida bee products, and a direction for future research, which should focus on understanding the mechanisms of action associated with the already elucidated pharmacological activities, as well as the bioactive properties of the main isolate's constituents identified in the chemical composition of these products.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Fenóis/análise , Antifúngicos
2.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839789

RESUMO

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Assuntos
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Antibacterianos/química , Ciprofloxacina/farmacologia , Etídio , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
3.
Bioorg Med Chem Lett ; 50: 128334, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425202

RESUMO

Compounds capable of inhibiting the efflux pump mechanism are a promising alternative against bacterial resistance because, when combined with antibiotics, they can increase the effectiveness of these drugs by inhibiting active efflux. Elaiophylin, derived from Streptomyces hygroscopicus, is a natural antibiotic that exhibits a variety of biological activities, including antibacterial activity. However, its potential as an inhibitor of the bacterial efflux mechanism has not been investigated. This study evaluated the ability of Elaiophylin to inhibit the NorA efflux pump in Staphylococcus aureus strains. Therefore, tests were performed to obtain the Minimum Inhibitory Concentration (MIC) and to verify the ability of Elaiophylin to potentiate the MIC of the antibiotic Norfloxacin and Ethidium Bromide (EtBr), known substrates of NorA efflux. Real-time PCR and molecular docking assays were also performed to assess the potential of Elaiophylin against NorA. The strains SA-1199 (wild type) and SA-1199B (NorA over-expressed) of S. aureus were used for this study. The results showed that Elaiophylin significantly decreased the MIC of Norfloxacin and EtBr, increasing the activity of these substrates against S. aureus, which carries the efflux protein NorA. However, Elaiophylin provided a non-significant reduction in norA gene expression, however, molecular docking demonstrated a high binding affinity between Elaiophylin and NorA efflux protein, indicating that Elaiophylin can act as a potential NorA in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Macrolídeos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Streptomyces/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrolídeos/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Conformação Proteica , Relação Estrutura-Atividade
4.
Eur J Pharm Sci ; 160: 105753, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581258

RESUMO

This study aimed to evaluate the antibacterial activity and to verify, in silico and in vitro, the inhibition of efflux mechanisms using a series of synthesized 1,8-naphthyridines sulfonamides against Staphylococcus aureus strains carrying MepA efflux pumps. The chemical synthesis occurred through the thermolysis of the Meldrum's acid adduct. The sulfonamide derivatives were obtained by the sulfonylation of 2-amino-5­chloro-1,8-naphthyridine with commercial benzenesulfonyl chloride. Antibacterial activity was assessed by the broth microdilution test. Efflux pump inhibitory capacity was evaluated in silico by molecular docking and in vitro by analyzing synergistic effects on ciprofloxacin and ethidium bromide (EtBr) and by EtBr fluorescence emission assays. The following 1,8-naphthyridines were synthesized: 4-methyl-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10a); 2,5-dichloro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10b); 4-fluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10c); 2,3,4-trifluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10d); 3-trifluoromethyl-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10e); 4­bromo-2,5-difluoro-N-(5­chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Compound 10f). The 1,8-naphthyridines derivatives associated with sulfonamides did not show antibacterial activity. However, they showed a favorable pharmacokinetic profile with possible MepA efflux pump inhibitory action, demonstrated in molecular docking. In addition to the promising results in reducing the concentration of intracellular EtBr. 1,8-naphthyridines act as putative agents in the inhibitory action of the MepA efflux pump.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Naftiridinas , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Naftiridinas/farmacologia , Sulfonamidas/farmacologia
5.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365898

RESUMO

The antibacterial activity and efflux pump reversal of thymol and carvacrol were investigated against the Staphylococcus aureus IS-58 strain in this study, as well as their toxicity against Drosophila melanogaster. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while efflux pump inhibition was assessed by reduction of the antibiotic and ethidium bromide (EtBr) MICs. D. melanogaster toxicity was tested using the fumigation method. Both thymol and carvacrol presented antibacterial activities with MICs of 72 and 256 µg/mL, respectively. The association between thymol and tetracycline demonstrated synergism, while the association between carvacrol and tetracycline presented antagonism. The compound and EtBr combinations did not differ from controls. Thymol and carvacrol toxicity against D. melanogaster were evidenced with EC50 values of 17.96 and 16.97 µg/mL, respectively, with 48 h of exposure. In conclusion, the compounds presented promising antibacterial activity against the tested strain, although no efficacy was observed in terms of efflux pump inhibition.


Assuntos
Antibacterianos/farmacologia , Cimenos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia , Animais , Cimenos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Timol/química
6.
Antibiotics (Basel) ; 9(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947644

RESUMO

This study is a pioneer in reporting the antibacterial properties of the species Croton ceanothifolius Baill. The genus Croton belongs to the family Euphorbiaceae composed of numerous species with documented biological activities. However, the pharmacological properties of C. ceanothifolius remain poorly understood. The leaves of this plant were submitted to hydrodistillation for essential oil (CcEO) extraction and the phytochemical characterization of the oil was performed by GC/MS. The minimum inhibitory concentration of the CcEO was determined for the evaluation of antibacterial activity against multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The antibiotic-modulating activity of the oil, in combination with antibiotics, was also evaluated. The combination of the CcEO with penicillin, norfloxacin, and gentamicin presented a synergistic effect. This effect was more significant for the association with antibiotics of the quinolone and aminoglycoside classes against Escherichia coli. The association of oil with gentamicin showed better results with regard to the Gram-positive strain. The association of the oil with norfloxacin against P. aeruginosa also showed synergism, but the association with penicillin did not change the effect of this antibiotic. Thus, it is concluded that C. ceanothifolius essential oil selectively potentiates the action of antibiotics against multiresistant strains.

7.
Food Chem Toxicol ; 136: 111023, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31866146

RESUMO

The present study evaluated the effect of the essential oil of Mikania cordifolia (EOMc) and its major constituent limonene alone or associated with antibacterial drugs against Multidrug Resistant Bacteria (MDR). To evaluate the antibacterial activity, the minimum inhibitory concentrations (MIC) of the oil and limonene against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were determined. The antibiotic-modulating activity was assessed using subinhibitory concentrations (MIC/8) of these substances in combination with conventional antibacterial drugs. Although no relevant antibacterial activity of the natural products was detected, both substances modulated the action of antibiotics against resistant bacteria. The EOMc demonstrated the best modulating effect against P. aeruginosa, presenting synergistic effects when associated with gentamicin and norfloxacin. In addition, the oil reduced the MIC of norfloxacin against E. coli as well as reduced the MIC of gentamicin against S. aureus. On the other hand, the best effect of limonene was obtained against S. aureus. Thus, it is concluded that the essential oil Mikania cordifolia and the isolated compound limonene do not have clinically significant antibacterial effect, but modulate the action of antibiotics against MDR bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Limoneno/farmacologia , Mikania/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...