Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 50(6): 703-715, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35352215

RESUMO

Altered extracellular matrix (ECM) production is a hallmark of many fibroproliferative diseases, including certain cancers. The high incidence of glycan-rich components within altered ECM makes the use of glycan-binding proteins such as Galectin-3 (G3) a promising therapeutic strategy. The complexity of ECM as a rich 3D network of proteins with varied glycosylation states makes it challenging to determine the retention of glycan-binding proteins in altered ECM environments. Computational models capable of predicting the transport of glycan-binding proteins in altered ECM can benefit the design and testing of such proteins and associated novel therapeutic strategies. However, such computational models require many kinetic parameters that cannot be estimated from traditional 2D pharmacokinetic assays. To validate transport properties of G3 in 3D ECM constructs, we developed a species transport model that includes diffusion and matrix-binding components to predict retention of G3 fusion proteins in glycan-rich ECM. By iteratively comparing our computational model to experimental results, we are able to determine a reasonable range of parameters for a robust computational model of G3 transport. We anticipate this overall approach to building a data-driven model is translatable to other ECM-targeting therapeutic strategies.


Assuntos
Matriz Extracelular , Galectina 3 , Simulação por Computador , Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Glicosilação , Polissacarídeos/metabolismo
2.
Microvasc Res ; 142: 104360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301025

RESUMO

Shear stress is recognized as a regulator of angiogenesis. However, the shear stress experienced by the endothelial cells of capillary sprouts remains unknown. The objective of this study was to estimate shear stress due to local interstitial flow along endothelial tip cells at the end of the capillary sprout lumen. Computational fluid dynamics were used to model flow within a blind-ended vessel, transendothelial flow across the vessel wall, and flow within the surrounding perivascular/interstitial space. Shear stress along the wall of the tip cells was calculated while varying sprout length, perivascular space channel width, and vessel wall hydraulic conductivity. Increasing sprout length, increasing wall hydraulic conductivity, and decreasing perivascular space width increased shear stress magnitude. Wall shear stress magnitude within the lumen ranged from 0.015 to 0.55 dyne/cm2 at the sprout entrance and linearly decreased to near zero at the base of the tip cells. Tip cell wall shear stress magnitude due to interstitial flow ranged from 0.009 to 4.65 dyne/cm2. In 3 out of 8 cases, shear stress magnitude was above 1 dyne/cm2 and considered physiologically relevant. The results provide a framework for discussing the role of local mechanical cues in regulating endothelial cell dynamics involved in angiogenesis. Mainly, interstitial flows may generate physiologically relevant shear stresses on tip cells in certain scenarios. This source of tip cell shear stress has not been previously considered or modeled.


Assuntos
Capilares , Células Endoteliais , Capilares/fisiologia , Hidrodinâmica , Estresse Mecânico , Veias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...